ORTHOPEDICS

INTRODUCTION TO ORTHOPEDICS/ TYPICAL & **ATYPICAL FRACTURES**

Orthopedics

- Ortho-making straight
- Paedics: child
- Orthopaedics means making bent bones straight of a child
- Term coined and Orthopaedics symbol given by Sir Nicholas Andry
 - o He is known as the Father of orthopaedics.

Fractures

00:01:45

• A breech in the continuity of bone or periosteum or both.

Pain and tenderness Abnormal mobility	
Loss of transmitted movements Deformity Types: o Transverse fracture o Oblique fracture o Spiral (twisted) o Segmental fracture o Comminuted fracture o Comminuted fracture Oblique Segmental	 The fracture does not exhibit typical features and can be diagnosed only with the help of radiological imaging. Types: Greenstick fracture- only seen in children before epiphysial closure. Most commonly seen in forearm bone- fall on outstretched hand. Treatment- breat and open the cortex at the same level then apply cast for 4-6 weeks. Excelled prognosis Hairline/march/ stress/ fatigue fracture- most commonly on the neck of the second metatarsal. Treatment: bed rest for 3 weeks. No cast is needed. Torus/ buckling fracture- most commonly in weight-bearing bone treatment- cast(conservative) Avulsion Fracture- the most common site is tibial tuberosity. Treatment screw fixation. Wedge compression fracture: The most common site is the thoracic vertebre (T 12 fracture). Pathological fracture (osteoporosis>malignancies) Impacted fracture- most common site is neck of femur. Can also be seen in Pilon fracture. Treatment- disimpaction done surgically.

Wedge compression Fracture

Impacted Fracture

Avulsion Fracture

- · Fracture union/fracture healing.
 - o Stage of impaction
 - o Stage of induction
 - o Stage of hematoma formation
 - o Stage of callus formation
 - o Stage of consolidation
 - o Remodelling
- Highest raw surface area: best prognosis: oblique fractures
- Prognosis: oblique(best)>transverse>spiral>comminuted>segmental(worst)

Complications of fracture

00:23:46

Myositis ossificans (Heterotopic Ossification)

- Ossification in unwanted/abnormal sites: Ectopic ossification
- Ossification should be membranous or endochondral.
- Ill-advised massage to a joint most common cause
- · Four Structures Involved
 - 1. Muscle
 - 2. Tendon
 - 3. Fascia
 - 4. Periosteum
- Common Sites
 - o Elbow joint: Brachialis muscle
 - o Hipjoint
 - o Shoulder joint
 - o Knee joint: Rare
- Clinical Features
 - o Pain
 - O Warmth due to excessive vascularity.
 - o Glossy skin
 - o Bony, hard mass felt on palpation.
 - o Restriction of joint movement.

Differential Diagnosis

- · Osteogenic sarcoma
- It is difficult to differentiate myositis ossificans and osteogenic sarcoma clinically and radiologically.
- The presence of a bony, hard mass indicates possible myositis ossificans or osteogenic sarcoma.
- Medical history assists in differentiating the two.
- If a patient had a violent massage from a traditional bone setter and develops the related clinical features, a diagnosis of myositis
 ossificans is made.

X-ray

00:27:22

- Periosteal reaction.
 - o The periosteum appears lifted.
- The lifted appearance of the periosteum is seen in both myositis ossificans and osteogenic sarcoma.
- Codman's triangle observed in osteogenic sarcoma.
- Confirmation is by biopsy Ackermann's Zones phenomena.

Ackermann's Zones Phenomena

- 3 layered phenomena
- When the biopsy positive for myositis ossificans is viewed under the microscope.
- Cell and tissue types appear segregated into 3 zones.

3 zones

- Innermost cellular zone
- · Middle fibroblastic tissue
- · Outermost mature, well-oriented bone

Treatment

- 1. 1st line of action rest for at least 6 weeks immobilization
- 2. Drug of choice: Indomethacin
- 3. Excision
 - a. It takes about one and a half years for a mass to mature.
 - b. Excision is done if the mass restricts normal joint movement.
- 4. Radiotherapy
 - Performed following excision to remove any remaining mass and prevent recurrence.

Myositis Ossificans Progressiva (Fibrodysplasia Ossificans Progressiva)

- · Congenital condition
- The average age of presentation is 5-15 years.
- Usually starts in the trapezius and latissimus dorsi region, then spreads to all the joints.
 - o Trapezius muscle found in the back.
 - o The disease progresses from the trapezius towards the chest wall before affecting all joints.

Common Association

- Macrodactyly: Short fingers.
- Klippel-Feil syndrome: Congenitally fused cervical vertebrae.
 - o Associated with the
 - → Myositis ossificans progressiva
 - → Springal shoulder
- Patient dies due to an intercurrent infection.
- · Rib cage joints are also affected.
- · Patient succumbs to respiratory failure.
 - o Myositis ossificans progressiva causes morbidity while myositis ossificans traumatica causes morbidity.

Treatment

- No cure
- Bisphosphonates after excision of bony bars may retard their regeneration.

Important Information

- Myositis ossificans progressive is an entirely different condition.
- Myositis ossificans is broadly divided into two categories:
 - o Myositis ossificans traumatica (acquired).
 - o Myositis ossificans progressiva (congenital).

MRI IN ORTHOPEDICS

00:00:20

Introduction

• MRI is a non-invasive procedure that allows to visualize soft tissue structures

• Invented by Felix Bloch and Purcell in 1946

T1 Weighted	• The contrast created in the image is determined by the difference in T1 relaxation times between fat and was	
Sequence	o Fat has high signal intensity- White	
	o Water has low signal intensity- Black	
	T1 weighted images are sharp and well-defined	
	T1 weighted images are excellent for detecting	
	o Normal Anatomy	
	Hemorrhage	
	o Marrow changes	
T2 Weighted	The characteristic of the T2 weighted image is high signal intensity for water.	
Sequence	o Water has High signal intensity - White	
	o Fat has Low signal intensity - Black	
	T2 weighted images are excellent for detecting	
	o Pathologies	
	o Fluid (Edema)	

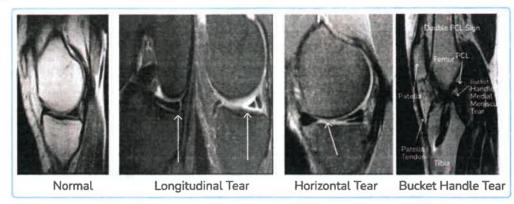
MRI Spine

- MRI spine is the IOC for Intervertebral Disc pathologies such as:
 - o Bulge
 - o Protrusion
 - o Extrusion
 - o Sequestration
- IOC to find Spinal tumors
 - Excellent delineation of vertebral body marrow allows primary and metastatic disease detection on T1 weighted sequence.
 - o It helps in detecting
 - → Spinal cord injury
 - → Epidural hematoma
 - → Disc herniation

MRI Knee

Meniscal Injury

- MRI is the investigation of choice for meniscal injury
- Menisci appears as a low-intensity structure in MRI
- On the sagittal image, normal menisci appear like a "Bow tie."
- On Coronal Image-Normal menisci appears like a "Triangle" or wedge
- The posterior horn of the medial meniscr is larger than the Anterior Horn, whereas the Lateral meniscr are similar in size and shape.
- MRI detects:
 - o Meniscal tear
 - o Meniscal cyst
 - o Discoid meniscus



Bow tie appearance on sagittal section

Meniscal tear

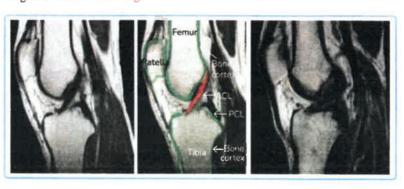
- Normal menisci appear-"Bow-Tie"
- White color area-Longitudinal tear
- White color in between bow-tie- Horizontal tear

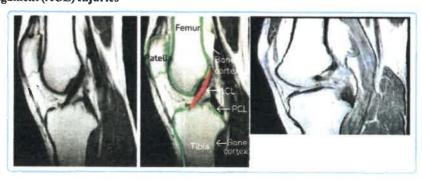
Meniscal cyst

• Protrusion into an extra area

Discoid meniscus

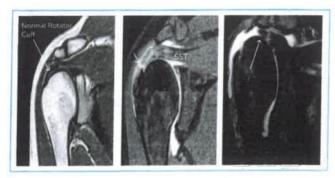
 On Coronal imaging, a Meniscal body width of 15mm or more is considered diagnostic of discoid meniscus.




00:08:30

Anterior Cruciate Ligament (ACL) Injuries

- On sagittal T2 Weighted images-Normal ACL appears as a straight band parallel to the Intercondylar Roof
- A common presentation of acute ACL Tear is non-visualization of the ligament
- Atorn ACL stump will give a "Bell-hammer Sign."


Posterior Cruciate Ligament (ACL) Injuries

MRI Shoulder

Rotator Cuff Injuries

- Image 1; Black band-Normal rotator cutf
- Image 2: White color structure-Supra spinal distended tear
- Image 3: Retracted tendon-Completely RC tear, retracted tendon

MRI Hip

00:11:30

- Used to detect
 - Osteonecrosis-Earliest non-invasive investigation
 - o Occult femoral fractures
 - o Labral tear of the hip joint

Avascular Necrosis (AVN)

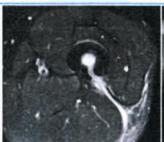
- T2 weighted images-Subchondral lesion shows a high signal intensity inner border with a low signal intensity peripheral rim
- This is termed the "Double-line" Sign, which may add to the specificity in the diagnosis of AVN
 - o Other Name-Geographic sign
 - o X-ray-Crescent sign
 - → Semilunar crescent-shaped opacity

MRJ in Osteomyelitis

00:13:07

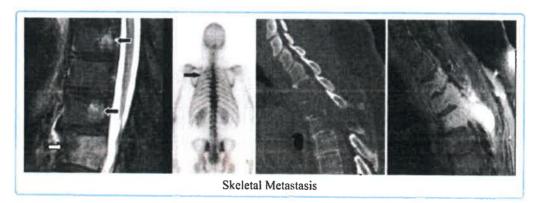
Acute Osteomyelitis

- The Earliest (2 days) MRI finding is Bone marrow edema
- T2 and fat suppression sequences or gadolinium uptake images are very important in detecting this
- It will show a subperiosteal abscess



Chronic Osteomyelitis

- MRI shows
 - o Abscess
 - o Sequestrum
 - o Sinus tract
 - o Penumbra sign (Rim sign) seen only in MRI



- White color- Sequestrum
- Black color- Involucrum
 - o New bone formation
- Opening of bone-Cloaca
- White color tract-Sinus tract (MRI)

MRI In Bone Tumors

00:15:20

- The T1 Weighted is important in the evaluation of bone marrow
- Most of the Bone marrow tumors will be evident as a lesion with low signal against a background of surrounding fatty marrow
- · MRI helps to differentiate Benign from Malignant lesions
 - o Benign lesions are usually well defined & sharply demarcated
 - o Malignant lesions are extensive & involve surrounding tissue
 - MRI is very useful in the local staging of bone tumors as it asses the Intramedullary extension & surrounding invasion
 - Lytic Bone lesions by X-ray can be determined only when it has 50% trabecular bone destruction, but MRI may be helpful in detection without destruction
 - MRI is very sensitive in detecting Skeletal Metastasis

- MRI-Investigation of choice in a suspected case of Cord compression from pathological vertebral body fractures
- Since MRI doesn't involve ionizing radiation, it is an investigation of suspected bony metastasis in a pregnant woman.
- MRI can be used to assess treatment response by evaluating the size and number of osseous metastasis over time So it has a
 prognostic significance

Advantages	Disadvantages
Non ionizing radiation	Takes a longer time for sequence and is costly
Better soft tissue contrast than CT	More expensive & Claustrophobic
Non-invasive, specific, accurate	 Dynamic Testing is not possible. The gantry is narrower than in CT. Gadolinium contrast can't be used in pregnant women. Noisy

Contraindications of MRI

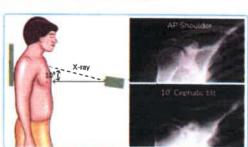
- Intra Cerebral Aneurysm Clips
- Internal Hearing Aids
- Middle Ear Prosthesis Cochlear implants
- Cardiac Pacemakers
- Implants
- 1"Trimester of Pregnancy
- Metallic Orbital Foreign Bodies

00:18:48

SPECIAL X-RAY VIEWS IN ORTHO

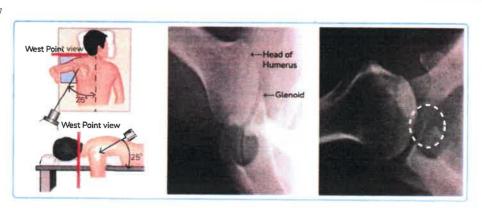
45° Lordotic View (Cephalic Tilt View)

- Specific view for visualizing clavicle
- The patient is in a standing position with a 45° tilt.


Serendipity View

- Also called Rockwood View
- Specific view for visualizing sternoclavicular joint
- The patient lies in a supine position
 - o Ray is passed at 45-60°

Zanca's View


- It is a standing radiograph for the Acromioclavicular joint
- The X-ray beam is directed 10 to 15° Cephalad
- Demonstrates AC Joint & Distal Clavicle
 - o AC Joint Dislocation
 - o AC Joint Arthritis
 - o Distal Clavicular Osteolysis
 - o Measuring the Coracoclavicular Distance

WestPoint View

00:02:31

00:01:35

00:00:29

00:01:06