PHARMACOLOGY

1

GENERAL PHARMACOLOGY

Pharmacokinetics

- Absorption
- Distribution
- Metabolism
- Excretion
- Pharmacokinetics k/s ADME study
- Primary pharmacokinetic parameters:
 - o In absorption BA (bioavailability)
 - o In distribution Vd (volume of distribution)
 - o In elimination (metabolism + excretion) Cl (clearance)
 - o With help of BA, Vd, Cl other pharmacokinetic parameters are calculated
 - → Loading dose
 - → Maintenance dose
 - → Half life

Absorption

Pathways of Absorption

- 1. Simple/passive diffusion
 - Most common pathway of drugs to cross cell membrane - enter into blood
 - Cell membrane is made up of phospholipids
 - o Only lipid soluble drugs cross cell membrane
 - o By simple/passive diffusion

pK value

- · If drug kept in a media with certain pH
- pH at which a drug is 50% ionised and 50% non-ionized
- That pH is pK value of drug
- · Measured by Henderson Hasselbalch equation

Henderson-Hasselbalch equation

$pH = pKa + Log_{10}([A]/[HA])$

- A'-ionic concentration of drug
- HA-non ionic concentration of the drug
- If A and HA become 50%
 - o $Log_{10}(1)=0$
 - o Then pH = pKa

PYO

Q1. If pH of media is changed to 1, by how much ionisation changes?

Ans. If the pH of the media is changed to 1, the ionisation changes by 10%

- If weak acidic drug and weak basic drug are kept in different media:
 - Weak acidic drug in a more acidic media OR Weak basic drug in a more basic media
 - → Drug becomes more non-ionic
 - → Lipid soluble

- Weak acidic drug in more basic media OR Weak basic drug in a more acidic media
 - → More ionic forms
 - → Water soluble
- o For example, Aspirin has a pKa 3.5

Oral aspirin - enter stomach (pH 0-1)	Inside stomach cell (pH - 7.4)	
 Becomes non ionized Crosses cell membrane of the stomach Enters into the stomach cell 	 Ionized Aspirin shows ion trapping inside the stomach cell so that it can enter into the blood. S/E: Gastric ulcers 	

P-glycoprotein

- Active transporter
- · Also known as efflux transporter
- Requires ATP and thus is known as ABC protein (ATP binding cassette)
- Also known as MRP-2 protein (Multi-drug resistant protein)
 - o If p-gp identifies a drug in;
 - → GIT-reduce absorption/bioavailability
 - → Kidney increase excretion of the drug
 - → Liver increases bile excretion
 - → BBB, placenta reduce the entry
- Substrate of p-gp: Digoxin
- P-gp inducers vs P-gp inhibtors:
- Immunosuppressive drug given in organ transplant Cyclosporine
 - o Inhibits p-gp
 - o P-gp responsible for excretion of bile
 - o Reduces the excretion of bile
 - o Cyclosporine causes cholestatic jaundice
 - → By inhibiting p-gp

Q2. Digoxin is excreted in urine by which transporter? Ans. P-glycoprotein

Routes of administration of drug

- Most common route of administration
 - · Oral drug enter stomach to the intestine
 - All drugs absorbed through small intestine (duodenum) >> stomach
 - O Due to its greater surface area
 - From intestine drug enter portal circulation (portal vein) reaches liver
 - Drugs undergo first pass metabolism (degradation) in liver
 - o First pass effect

P-gp inhibitors	
Reduce the activity of p-gp Drugs - mnemonic: QVACK Quinidine Verapamil Amiodarone Clarithromycin/erythromycin Ketoconazole When these drugs combined with digoxin Reduce the urinary excretion of digoxin Increases plasma concentration	

00:13:47

00:09:57

- o Alsok/s: Pre-systemic metabolism
- o Reduces bioavailability
- Less amount of drug reaches heart through IVC

Oral Drugs having high First pass metabolism effect

- · Not given orally
- If given then taken in high oral dose

Q3. How to bypass the FPM of the liver?

Ans. By giving the drug by all other systemic routes except the oral route

 Because then the drug directly reaches the heart.

	Drugs not given orally	I	Orugs given in high oral dose
L	Lignocaine		Propranolol
F	entanyl	•	Morphine
1	Natural steroids	•	Nitrates
0	Hydrocortisone		
0	Aldosterone		
0	Oestrogen		
	→ Hence synthetic oestrogen is given orally in OCP		
0	Testosterone		

Sublingual/buccal route

- The drug enters superior vena cava > Reaches heart > Bypass the first-pass metabolism
- Example
 - o Sublingual nitrates
 - → DOC in Acute Angina

Rectal route

- Drug enters external hemorrhoidal vein
- Enters inferior vena cava
- Bypass the first-pass metabolism
- Example
 - o Rectal diazepam-DOC in febrile seizures in children

Intramuscular route

- Drug given intramuscularly enters muscle, then can leak back from muscle and can stain subcutaneous tissue
- To avoid this staining of subcutaneous tissue or leaking back
 - o Ztechnique is used, in which:
- Drugs given by Z technique
 - o Anti-psychotics
 - o Iron dextran

Transdermal/topical route

- Transdermal patches
- Long-acting route
 - o Drug absorbed continuously and Sustained plasma levels achieved
- Usually given for long-term chronic diseases
- Site of maximum absorption:
 - o Post auricular area > Scrotum > face and neck
- Site of least absorption: Where the skin is thick due to heavy keratinization
 - o Palms
 - o Soles

Patch	Indication	
Nicotine patch .	Smoking cessation	
Hyoscine (scopolamine), Diphenhydramine	Motion sickness	
Nitrates	Chronic Angina	
Clonidine	Hypertension	
Selegiline	Depression	
Rivastigmine	Alzheimer's	
Rotigotine	Parkinson's disease	
Oestrogen, progesterone	HRT (Hormone Replacement Therapy)	

Bioavailability

00:20:49

• Fraction of drug that reaches systemic circulation in unchanged form with time and is not degraded by liver (1) PVQ: INICET 2022

• BA of IV drugs: 100%

- o Drug directly administered into the systemic circulation
- o No cellular barriers or absorption involved
- Rest of all other routes: BA < 100%
- BA calculation
 - Then bioavailability is calculated from the AUC of oral drug and AUC of the IV drug.
 - O Bioavailability (F) = AUC₁₀/AUC₁₀
- BA has no units
 - o It's a fraction
 - o Symbol: F

Area under the curve (AUC)

- · Calculated by Trapezoidal rule
- The maximum (peak) drug concentration corresponds to C_{max}
- Time at which C_{max} achieved T_{max}
 - o Defines rate of absorption
 - → How fast the drug is getting absorbed
- IfTmax;
 - o Small Drug get rapidly absorbed
 - o Large Drug get slowly absorbed into blood
- C_{mex} Maximum plasma concentration achieved in the blood
- AUC Total extent of absorption of a drug

Bioequivalence

- Compare the bioavailability of different brands of same drug (generic drugs)
- Acceptable variation in BA: 80% 125%
 - o Drugs having equal variation are known as bioequivalent drugs.
 - o Can interchange the brands
- Exception;
 - o Phenytoin
 - → Even 80-125% variation is harmful
 - → No two brands of Phenytoin are never equal to each other
 - → Bio~inequivalent

PYQ: INICET 2022

- Extra vascular movement of the drug (into organs)
- It's false or apparent volume of plasma
 - o Not true volume of plasma
- · Definition: Volume of plasma (liters) required to contain a drug in equal concentration as that of plasma
 - o More amount of drug enters the organ more Vd

Warfarin is highly lipid soluble and 99% albumin-bound.

• Warfarin has low Vd due to high protein bound (Predominant factor)

Q5. Do all epileptics increase each other's toxicity?

Ans. Displace each other from albumin

Increase free fraction → Free drug enters organs → Increase Vd → Toxicity

Q6. Why is Sulfonamide (cotrimoxazole) avoided in neonates and 3rd trimester of pregnancy?

Ans. Sulfonamides cause the displacement of bilirubin (endogenous toxin) from albumin

- This makes Bilirubin free
- This can enter the brain of the neonates
 - o As BBB is not fully developed in neonates
- Damages organs causes kernicterus(encephalopathy)

Hemodialysis

00:31:25

- Drug with high Vd not present in blood
 - o Deposited in organ
 - o Poisoning of that drug hemodialysis is not effective

Do hemodialysis Mnemonic: BLAST	No role Mnemonic: AVOID ABC	
Barbiturates Lithium Alcohols Aspirin Salicylates Theophylline	 Amphetamin Verapamil/warfarin Organophosphate Imipramine Digoxin (Vd- 450 litres) Amiodarone Benzodiazepines Chloroquine 	

- Chloroquine has highest volume of distribution around 15000 litres
 - o Deposits in all organs
 - o It get deposited in retina
 - → Cause Bull's eye maculopathy permanent blindness

Redistribution

Seen with highly lipid-soluble drugs like:

- 1. Thiopentone
- 2. Fentanyl

Q7. Action of thiopentone terminated by?

Ans. Redistribution into fats not by elimination in urine

Metabolism and Excretion (Elimination)

- Metabolism
 - o Converting lipid soluble/non-ionic/non-polar drug into water-soluble/ionic/polar form
 - o Liver is the most common organ of metabolism
- Water soluble forms are easily excreted out of the body
 - o Through saliva/urine/sweat
- · Most common route of Excretion Urine by kidneys

00:35:03

Activity of drug after metabolism

Active drug to active form	Active drug to inactive metabolite	Inactive forms (prodrug) to active metabolite
Most drugs converted to inactive forms after metabolism Example; mnemonic - FADS CP o Fluoxetine o Allopurinol o Diazepam o Spironolactone o Codeine o Primidone	Most drugs undergo this process	Examples of prodrugs; mnemonic - PLASMA CCD O Prednisone O Levodopa O ACE inhibitors (pril) O Sulfasalazine O Mycophenolate mofetil O Acyclovir/ganciclovir O Carbimazole O Clopidogrel/prasugrel O Dipivefrin

Q8. What are ACE inhibitors that are not prodrugs?

Ans. Captopril and lisinopril

Hepatic metabolism

Break
Lipid soluble
(non-lonic)
(non-lonic

· 2 chemical reactions carried out

00:39:34

Phase 1 reaction	Phase 2 reaction
Catabolic reaction	Anabolic reaction/conjugation reaction Linking or conjugation of polar group to each small fragment Drug become water soluble
 Drug becomes active or inactive Prodrug converted to active form 	Drug becomes inactive only Except for morphine and minoxidil – they become active
Reactions Oxidation Carried out by CYP450 enzymes in liver Reduction Carried out by CYP450 enzymes in liver Dehydrogenation Deamination Cyclization Decyclization	Reactions Glucuronide conjugation (Most common) Carried out by UDP-GT enzyme in liver Glycination Sulfation Methylation Acetylation Glutathione conjugation
All phase 1 reactions – Microsomal reaction (inside smooth endoplasmic reticulum)	All phase 2 reactions – Non Microsomal reaction Occur outside smooth endoplasmic reticulum Except glucuronide conjugation → Microsomal reaction

CYP450 Enzymes

- Cytochrome P450 enzymes
 - o Contains heme pigment
 - Show genetic variation/polymorphism in high/low amount
- CYP enzyme inducers
 - o Drugs that increase the activity of CYP
 - o Mnemonic: GRASS
 - → Griseofulvin
 - → Rifampicin
 - → Alcohol (chronic)
 - → All antiepileptics (Except valproate)
 - Phenobarbitone
 - Phenytoin
 - Carbamazepine
 - → Smoking
 - → St. John Wort
 - Plant product
- CYPEnzyme Inhibitors
 - o Drugs that inhibit CYP action
 - o Mnemonic: COKE IVC GAR
 - → Cimetidine
 - → Omeprazole
 - \rightarrow Ketoconazole
 - → Erythromycin
 - → Isoniazid

C	CYP type PYQ: INICET 2023		Substrate (drugs that gets metabolised)
•	CYP1A2	•	Theophylline, clozapine
•	CYP2C9 (least quantity)	•	Phenytoin, warfarin
•	CYP2C19	•	Clopidogrel, Azoles, PPI
•	CYP2D6	•	Mnemonic: PATTSON Propranolol, Antiarrhythmics (quinidine), TCA (tricyclic antidepressants), Tamoxifen, Codeine, Antipsychotic, SSRI
•	CYP2E1	•	Paracetamol
•	CYP3A4 (maximum quantity)	•	>50% drugs are metabolised

Important Information

- All antiepileptics are CYP inducers except Valproate
- Valproate is a CYP inhibitor
- Chronic alcohoism will act as CYP inducer
 - o Increase metabolism of other drugs
- · Acute alcoholism acts as a CYP inhibitor

- → Valproate
- → Ciprofloxacin
- → Grape-fruit juice
- → Alcohol (acute)
- → Ritonavir (HIV)
- o Isoniazid inhibits all CYP types, Except CYP2E1 which it induces.
- o Grape-fruit juice contains furanocoumarins which act as CYP inhibitor.

Drug interactions

- CYP inducers or inhibitors when combined with a substrate of CYP, it may increase or reduce plasma levels of substrate.
 - o Shows drug interactions.
- · They are:

 Oestrogen (oral contraceptive pill) Metabolised by CYP3A4 If given with Rifampicin → CYP inducer Oestrogen gets rapidly metabolized Causing Contraceptive failure 	II. Cisapride (for constipation), Astemizole and Terfenadine (antihistaminic) o Metabolised by CYP3A4 o When combined with Erythromycin/ketoconazole → CYP inhibitors o Plasma levels of substrates increase o Lead to toxicity – Torsades de pointes → QTc increases o Hence these are banned	III.Clopidogrel (prodrug) Converted to active form – by CYP2C19 Antiplatelet drugs can cause stomach bleeding Omeprazole is given (CYP inhibitor) Clopidogrel not converted to active form Leads to increased risk of MI/Stroke
---	---	--

Drugs metabolised by Acetylation

- Mnemonic: SHIP-DP
 - o Sulfonamide
 - o Hydralazine
 - o Isoniazid
 - o Procainamide
 - o Dapsone
 - → First drug for leprosy
 - → Sulphonamide
 - o PAS
 - → First drug for TB
- Enzyme cause acetylation NAT
 - o Nacetyl Transferase enzyme

Fast acetylators	Slow acetylators
 Individuals with high NAT level 	 Individuals with poor NAT level SHIP drugs accumulate in the plasma leading to toxicity Causes DLE (drug induced lupus erythematosus)

Elimination

- Drug moving out of body with time
- Rate of removal of drug (mg/min)
- Elimination metabolism + excretion
 - o Most common site of metabolism liver
 - o Most common route of Excretion urine (kidney)
- Excretion route of elimination
 - o Drug move out of body through body secretions

→ Urine	→ Saliva
→ Bile	→ Tears
→ Sweat	→ Milk

- Bile
 - Oral contraceptive pills (OCP) excreted in bile
 - o Undergo enterohepatic reabsorption through intestinal bacteria and again enter liver
 - o Antibiotics (doxycycline and ampicillin) kill intestinal bacteria
 - → Reduce enterohepatic reabsorption of OCPs
 - → OCPs plasma levels fall
 - → Cause contraceptive failure
- Milk
 - o Drugs avoided in breastfeeding
 - o Mnemonic: SMALL
 - → Sulfonamides
 - Cause kernicterus
 - → Methotrexate
 - Hepatotoxic
 - → Aspirin
 - Reye's syndrome (liver disease)
- → Lithium
 - Seizures
 - Metabolic abnormalities
- → Levetiracetam
 - Anti-epileptic drug to be secreted maximum in the breast milk,

Urinary excretion

- 2 methods
 - o Glomerular filtration
 - o Active tubular secretion

Glomerular filtration

- Passive process
- · Occurs through Paracellular spaces
 - o Spaces between podocytes
- · Protein binding reduces GFR
- · Podocytes contain negative charge
 - o Repels negative charge of basic drug
 - Basic drugs filtered less than acidic drugs

Active tubular secretion

- Active process
 - o Require ATP
- Drug excreted into urine by transporters through pumps
- Protein binding increases secretion rate
- OATP transporter
 - o Organic anion transport protein
 - o Excretes acidic drugs: Penicillins
 - o Probenecid inhibits OATP
- OCTP transporter
 - o Organic cation transport protein
 - o Excretes basic drugs: Tubocurare
- P-gp
 - o P-glycoprotein
 - o Excretes neutral drugs: Digoxin
- · Passive tubular reabsorption
 - Lipid soluble drugs get reabsorbed

Important Information

- Probenecid inhibits the OATP transporter
- Probenecid + penicillins -inhibit urinary excretion of penicillins
- Makes penicillins longer acting

00:57:00