RADIOLOGY

1 BASICS OF RADIOLOGY

Types of Radiation

00:00:55

- 1. Electromagnetic radiation They travel as photons like light (Light is not used for imaging due to its poor penetration power)
 - → X-rays
 - → Gamma rays
- 2. Particulate radiation
 - → Alpha
 - → Beta
 - → Neutrons
- The above radiation are called Ionizing radiation

Damage and Penetration

00:01:51

PYQ: AHMS 2018

- Gamma rays have the maximum penetration power out of alpha, beta, X-rays
- They go through the body with a higher penetration
- Gamma, with a maximum penetration causes minimum damage to the body
- Alpha, with a minimum penetration causes maximum damage to the body
- Damage caused: Alpha > beta > X-ray > Gamma
- Penetration caused: Gamma > X-ray > Beta > Alpha
- Decreased penetration means increased damage
- Alpha is the most damaging/most ionizing/maximum linear energy transfer (LET)
- The penetrating power of Neutrons > Gamma

00:03:39

No radiation in

- USG
 - o Uses sound waves
 - o FAST
 - O Doppler: It is an ultrasound for the blood flow
- MRI
 - o Uses Radio waves
 - o MRCP (Magnetic Resonance Cholangio pancreatography)
- No radiation means non ionizing

Radiation is seen in

- X-rays (It is not produced from the nucleus of the atom)
 - o It is used in radiography
 - o CT scan (3D X-ray)
- Gamma rays
 - o It comes from the nucleus of the atom
 - o It is used in nuclear medicine
 - o Nuclear medicine investigation modalities include
 - → Scintigraphy
 - → Radioisotope scan
 - → PET
 - → SPECT scan

Note:

- ERCP comes under contrast X-ray (Dye studies)
 - o It has radiation exposure
 - o We put an endoscope, it then goes to the duodenum and goes to the duct and contrast is put and X-ray images are taken
- · Contrast X-ray for kidney, ureter, bladder is known as Intravenous Pyelogram

- HSG (Contrast X-ray for uterus and Fallopian tubes)
 - o Hysterosalpingography
- LMP should be asked in a female before doing a CT. In this way, we rule out that there is no chance of pregnancy
- Rule of 10: Investigations that has radiation exposure should be done within ten days because its sure that there is no ovulation/fertilization/pregnancy during that time

Machine/Equipment identification

X-ray Machine

- This is a digital X-ray machine
- The advantage is that since we get a digital image, as soon as the technician clicks the X-ray beam that comes is detected by the electronic detector and we get the image on the screen
- It can be accessed by anybody in the hospital if we have the PACS system (Picture Archiving and Communication system)

USG

- It uses sound waves
- Sound wave frequency that is used is outside the human frequency audible range (MHZ)

CT vs MRI

- Tunnel is absent in CT machine (Image 1)
- In MRI machine, tunnel is present (Image 2)
- MRI is contraindicated in claustrophobic patients
- MRI can be done in Claustrophobic patients using sedation
- Unit to measure the strength of the magnet used in MRI Tesla
- MRI is contraindicated with metallic foreign body, pacemaker, cochlear implant, knee implant
- Now MRI compatible implants are available
- The walls of the CT room are coated with Lead
- The walls of the MRI room have Faraday's cage
 - o It is used in MRI room to prevent the disturbance from the outside radiowaves with the MRI radiowaves
- CT is always faster as it takes only 2 mins for CT brain whereas MRI brain takes 20 mins, hence CT is preferred in emergencies

Principles of Various Modalities

00:12:42

1. X-ray:

- o X-ray tube is the source of X-ray
- o Electrons come from cathode to anode
- Anode has Tungsten, the nucleus of the anode is positively charged and the incoming electron is negatively charged
 - → These electrons get deflected by the anode nucleus
 - → This is called as Brehmstrahlung radiation
- o Other method of producing radiation is Characteristic radiation
 - → It is characteristic of the material present in the anode

2. CT scan:

- o X ray tube is present and it rotates around the patient taking images from all the angles
 - → Continuous rotation is made possible by slip ring technology (Spiral CT)
- Ultrasound:
 - o It is based on the principle of Piezoelectric effect
 - o In the probe, electricity is converted into sound by a crystal, which sends the sound into the patient's body, where it returns and is converted back into electricity.
 - o The crystal that we use is made up of Lead Zirconium Titanate which has the piezoelectric property

- 4. MRI
 - o It is based on gyromagnetic property of moving protons.
 - Based on H-
 - o NMR (Nuclear magnetic resonance) is the principle of MRI
- 5. PET
 - o Positron Emission tomography
 - o The principle of PET is annihilation coincidence circuit.
 - o 18F-FDG is used in PET

Terminologies - Black and White

00:19:02

00:19:48

	Black	White	
X-ray	Radiolucent - air Radiopaque - bones		
CT	Hypodense	Hyperdense - bones, calcifications and acute hemorrhage	
MRI	Hypointense	Hyperintense	
Ultrasound	Hypoechoic Anechoic-clear fluid (Bile)	Hyperechoic	

X-ray Tube Construction

- From the cathode, electrons come and goes towards the anode
- The electrons are produced at cathode by the process of Thermionic emission
- Cathode is made up of Tungsten (W)
- Anode is made up of Tungsten (W)
- X-ray tube should have vacuum
 - No gas should be present so that it doesn't interact with the moving electrons in the X-ray tube
- X-rays are produced when the fast-moving electron beam is suddenly stopped.

x-ray tube (a vacuum) Electron Source (cathode) electrons x-rays film

Normal vs Mammography X-ray tube

- Mammography is the X-ray of the breast.
- We need a different machine in mammography because X-ray tube construction is different and different potential is needed

X-ray tube in mammography

- Anode Molyhdenum
 - o It has lower atomic number as compared to Tungsten in the normal X-ray tube
 - o X-rays that are produced are low energy X-rays (low kv)
 - o When the kv is low, it improves the contrast in the image (Microcalcifications can be identified)
- · Machine has a compression plate
 - o For mammography, compression is a must
 - o That's why it is contraindicated in acute painful conditions like Abscess

Contraindications of Mammography

- Breast abscess
- Young females
 - o Young females with dense breast
 - o In dense breast, white calcifications are not seen
- In a female with breast implant
 - o If the breast is compressed, implant will rupture
 - o In this case, MRI is done
 - o Intracapsular rupture of the implant: Ruptured membranes are seen
 - → Linguine sign

Five basic densities on X-ray

• Lesser the density, more the penetration of X-rays and more black the substance appears

- The air appears black least dense.
- · Metal appears white most dense.
- · Fat appears dark less dense than water
- Air < fat < Water/soft tissue < bone < metal. (Increasing order of density; Whiteness increases)
- · Consolidation of lungs appear white
- · Collapse of lung (no air) appear white
- Pneumothorax appears black

00:24:06

00:22:30

HU value

- . HU value is used in CT scans
- HU Hounsfield units after the name of Godfrey Hounsfield who invented the first CT machine
- HU value depends on the attenuation coefficient/ electron density of the substance
- When the attenuation coefficient is high, HU value is high.
- HU value of 0- reference substance distilled water (Gray on CT)
- Negative value means less dense than water.
 - o Air (-1000) and fat (-50 to -100)- black on CT
- Positive value means more dense than water.
 - o Soft tissue, metal, bone (+1000)
- Air appears jet black on CT
- Fat is called as dirty black on CT
 - o Fat containing lesion called Angiomyolipoma which is associated with Tuberous sclerosis
- Image 1: CT showing Metallic foreign body streak artifact.
- Image 2: CT showing white acute hemorrhage.
 - o Hyperdense on Non contrast CT
 - o Chronic hemorrhage-RBC lysis, the density decreases, it becomes hypodense
- Image 3: Kidney has the same density as of subcutaneous fat
 - o Dirty black appearance
 - o Fat containing Angiomyolipoma
- Image 4: Jet black colour surrounding the lung Pneumothorax

NCCT vs CECT

- CECT (image 2) uses iodinated contrast that is given IV.
- White aorta helps to identify that this is a contrast scan
- When contrast is given, as compared to the normal liver, how these lesions take up contrast
 - o Early contrast, more contrast -they appear more white
- In NCCT (Image 1), since the lesions have same density as that of the adjacent parenchyma, they gets camouflaged hidden in the liver parenchyma

00:28:47

- It is important to give contrast incase any lesions are suspected.
- · Indications for contrast
 - o Lesion/Tumour
 - o Infections/Inflammation
- Indications for NCCT
 - o Calcifications
 - → Renal stones: Urinary tract stones are calcified stones
 - → Gall bladder stones: Non calcified and can be seen on USG
 - o Acute hemorrhage
 - → Chronic hemorrhage: SWI MRI-this picks up the hemorrhage hemosiderin well

CT vs MRI

- White skull bone cortex CT (Image 1)
- Black skull bone cortex MRI (Image 2)
- White outline that is seen is the outer most fat in the scalp
 Fat appears white on MRI
- Knee image The bone cortex is white → CT (image 3)
- Marrow containing fat appears black on CT and white on MRI (image 4)
- Always look for the bone cortex

Posterior Acoustic Shadowing and Enhancement

- Shadow appears black.
- Enhancement appears white.
- Posterior acoustic shadowing is given by (Image 1)
 - Gall stones
 - → Gall bladder appears black because the fluid is black on ultrasound
 - → Gallbladder with stones → Sound reaches calculus → Sound reflected, so calculus itself is hypereflective, hyperechoic → appears white.
 - → Stones don't transmit any sound → No sound received behind stones → No sound echoed → It appears black→ Posterior acoustic shadowing
 - 2. Renal stones
 - 3. Calcifications of bones
 - 4. Air
- · Posterior acoustic shadowing is due to bad conductor of sound
- Bile doesn't give shadowing because it is a good conductor of sound
 - o Enhanced sound → more sound is echoed → it appears white
- Posterior acoustic enhancement is seen with fluids (Image 2)
 - o Cystic lesions
 - o For e.g.: A patient with a breast lump is taken for ultrasound, the lesion appears jet black
 - o The area behind the cyst appears white because of enhancement because of fluid transmission
- Ultrasound helps to differentiate a solid vs cystic lesion
 - o Posterior acoustic enhancement is seen in cystic lesion
- Fluid appears black
 - O So fluid is called as anechoiec
 - o The fluid is transmitting the sound but not producing any echo

00:34:00

Doppler

- Doppler is an ultrasound for the blood flow
- It is based on the principle of doppler shift
- Doppler shift is a change in frequency of sound by the moving blood
 - o It shows colour in the doppler
- Colour in the colour doppler indicates the direction of the blood flow
 - o Red indicates flow towards transducer
 - o Blue indicates flow away from transducer
 - Mnemonic Red Tower (Towards) Blows
 Away (Away from the transducer)

Spectral Doppler

- Spectral doppler Graph / Duplex doppler
- The velocity of the blood flow can be quantitatively measured

Elastography

- Elastography is the study of elasticity or loss of elasticity i.e., fibrosis
 - It helps to identify the malignant nodules of the thyroid (Image
 3), liver fibrosis (cirrhosis)
- Pressure is given with probe and the values can be obtained in kPa.
- Black and white ultrasound is a B mode of ultrasound (Image 2)
- Orange colour ultrasound is a contrast enhanced ultrasound (CEUS) (Image 1)
- · Contrast that we use in ultrasound is microbubbles
- CEUS is commonly used in liver lesion characterization
- The advantage of ultrasound contrast is the microbubbles get excreted by the lungs and not the renal excretion
 So they are safe in renal failure
- Unlike the CT or MRI contrast that have renal excretion, ultrasound contrast can be given in renal failure

Investigations for Vascular Pathologies

- Vascular pathologies are Thrombosis, Embolism, Blood vessel aneurysm, Aortic dissection
- In these conditions, Doppler can be used
- Doppler (Image 1) is the first investigation for peripheral vessels where the vessels can be easily accessed by ultrasound
- Doppler is done to a patient with intermittent claudication
- Image 2:
 - o White bone is seen
 - o IV contrast is given
 - o This is CT angio
 - o CT angio is faster than MR angio
 - It is preferred in emergency conditions like Aortic dissection, Pulmonary embolism
- Image 3: White blood vessels are seen and white bone is not seen
 - o This is MR angio
 - o MR angio can be done with or without contrast
 - o This can be done in Renal failure where contrast cannot be given

- Image 4: The angiography where the blood vessels appear black is DSA (Digital Subtraction Angiography)
 - o Its not necessary that DSA is always black
 - o DSA can be black or white
 - o It is done by Fluoroscopy (video X-ray can show the contrast black or contrast white)
 - o Contrast is given by Intrarterial technique
 - o It is more invasive investigation
 - o This is the gold standard investigation
- · The advantage is that as it goes inside the artery
 - o If any pathologies like a thrombus, it can be removed
 - o Aneurysm: Coiling can be done (Embolising the aneurysm)
 - o Other treatment for Aneurysm is clipping

- 1. Air-CT
 - o Pneumothorax
 - o The air is a bad conductor so no USG.
 - o The air does not give signal so no MRI.
 - o Wherever there is air, CT is done
- 2. Fluid Ultrasound
 - o It appear black and anechoic
- 3. Calcification CT
 - o Appear white
- 4. Soft tissue MRI
 - o Soft tissues are Muscles, ligaments, cartilage, nerves
 - o ACL tear in the knee
 - o Meniscal tear in the knee
- 5. Cortex-CT
- 6. Bone marrow-MRI
- 7. Medical device positioning: Chest-X-ray
 - o E.g.: Pacemaker
 - o Central line ET tube
- 8. Vascular pathologies
 - o Doppler is used for screening/first investigation
 - o IOC: CT Angio
 - o Gold standard investigation is DSA
 - o CT Angio is the best investigation for Aneurysm than DSA
 - → CT angio gives the true size of the aneurysm because it will be able to see the thrombosed parts also
 - → That's why preoperatively, CT Angio has to be done

Contrast Media

- Contrast helps in better evaluation, visualization
- Positive contrast makes it appear white
 - o Examples: Iodinated, Gadolinium, Barium
- Negative contrast make appear black.
 - o Eg:Air
- lohexol
 - o Iodinated contrast
 - o Water soluble contrast
 - o It is used wherever it is X-ray wherever contrast is needed
 - o Contrast X-rays like HSG, IVP, CECT
 - o The most commonly used is Iohexol

00:46:31

00:48:58

- o Iohexol is a low osmolar contrast and is renal safe
- o Most common side effect Anaphylactoid reaction which are not IgE mediated
- o KFT/RFT is done before giving the contrast
- o Since it has renal excretion, Renal function should be normal
- o GFR can be evaluated by Serum creatinine
- o Serum creatinine should be normal before giving contrast otherwise contrast induced nephropathy can occur

Gadolinium

- o It is a contrast used in MRI
- o It has magnetic properties
- o It is a non iodinated contrast
- o Nephrotoxic
- o TI weighted MRI
- o Gadolinium is a paramagnetic substance.

Sonovue

- o This is the ultrasound contrast
- o These are Microbubbles of sulfur hexafluoride gas
- o These are excreted from the body via lungs
- o Safe in renal failure

Barium

- o Barium sulfate is the contrast
- o It is given via oral route or rectal route
- o It is for GIT only
- o It is not given via IV because it is water insoluble
- o Barium is contraindicated in Perforation
 - → In Perforation, iodinated contrast is used
 - → If Barium goes out through perforation, it will go into the peritoneal cavity causing Peritonitis
- The patient is drinking Barium and the image can be seen on the TV screen directly
- This comes under Fluoroscopy
- Fluoroscopy means video X-ray done for moving structures like GIT
- All the barium studies come under Fluoroscopy
- Fluoroscopy has more radiation exposure
 - o Wearing the lead apron is important because radiation exposure is very high

- Diatrizoate
 - o The brand name: Gastrografin
- Non ionic dimer is Iodixanol
 - O This is contrast that is isosmolar (Mnemonic: iso nodi = non ionic dimer contrast)

- Ionic monomers are high osmolar (Mnemonic: IM high)
- · Rest of the groups are low osmolar
- Ionic dimer: Ioxaglate

Radiation Units 00:58:40

- The sequence of events is:
 - o Exposure to radiation.
 - o Absorption of radiation.
 - o Effect of radiation on the body
 - o Damage to the tissue depends on tissue sensitivity and the type of radiation
- The unit that is dependent on the type of radiation is the equivalent dose
- The unit that depends on the sensitivity of the tissue is Effective dose
- All the conventional units begin with R.
- SI units don't begin with 'R'
- RAD is the unit of radiation absorbed dose (Conventional)
 - o GRAY is the SI unit of radiation absorbed dose
 - o Mnemonic: RED → GRAY
- REM is the conventional unit of Equivalent dose
 - o SIEVERT is the SI unit of Equivalent dose
- REM is the conventional unit of Effective dose
 - o SIEVERT is the SI unit of Effective dose
- Exposure
 - o Roentgen is the first person who discovered X-ray.
 - o Roentgen is the conventional unit
 - o Coulomb/kg is the SI unit
 - o Exposure means ionization.
 - o Ionization means the creation of ions-positive and negative ions or the charge.
 - o The SI unit for charge Coulomb.
- Unit for radioactivity
 - o Conventional unit-Curie
 - o Slunit: Becquerel.
- 1 Gray = 100 Rad
- 1 SV = 100 Rem

DOSE CO	NVENTIONAL UNITS	SI UNITS
EXPOSURE DOSE	ROENTGEN	COULOMB/KG
RADIATION ABSORBED DOSE	RAD .	GRAY
EQUIVALENT DOS	E REM	SIEVERT
EFFECTIVE DOS	E -	SIEVERT

Examination	Typical effective dose (mSv)	Equivalent number of chest X-rays	Equivalent length of background exposure
X-ray			
Limbs and joints (except hip)	<0.01	<0.5	<1.5 days
Chest (single PA)	0.02	1	3 days
Skuil	0.07	3.5	11 days
Lumbar spine	1.3	65	7 months
Hip	0.3	15	7 weeks
Pelvis	0.7	35	4 months
Abdomen	1.0	50	6 months
IVU	2.5	125	14 months
Barium meal	3	150	16 months
CT head	2.3	115	1 year
CT chest	8	400	3.6 years
CT abdomen or pelvis	10	500	4.5 years