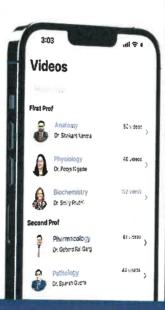


Cerebellum Medicine

For the Students By the Teachers

Cerebellum Best Seller Plans


Mission **NEET PG | INICET 2.0** Plan Mission **FMGE 200+ 2.0** Plan

India's Largest & Most Successful Online LIVE Program

Separate for NEET PG / INI CET / FMGE

Mission Program Highlights

- Subject wise Comprehensive Lectures covering entire course
- Exam & Discussion : E & D covering all important PYQ's / IBQ's / PYT's
- Marathon: Final Revision of all 19 subjects in 7 days
- Full access to BTR Online by Dr Zainab Vora
- Grand Tests
 Late Night PYQs with Discussion
- Full Access to Main Videos & Quick Revision Videos (English & Hinglish)
- Super Relevant Q Bank Checked by Faculties
- Access to recorded lectures if you miss a lecture
- Printed Notes (Hardcopy)
 Available on extra chargeable basis
 - * Main Lecture Notes
 - * Quick Revision Notes
 - * Work Books

New Batches

For One of The Most Important Exams of Your Life
Trust Cerebellum's Legendary Teachers

Your Course Completion is Our Responsibility

Hurry Subscribe For Your Best Plan

APPLY CODE: CBA100

Helpline No:

+91 8800222009

Table of Content

Chapter Name	Page No.
1. CARDIOLOGY	
1.1. Stable Ischemic Heart Disease - Diagnosis	1
1.2. Stable Ischemic Heart Disease - Management	7
1.3. Acute Coronary Syndromes	12
1.4. Heart Failure & Cardiomyopathies	21
1.5. Aortic Disorders & Marfan Syndrome	28
1.6. ECG - Review of Basic Concepts	37
1.7. Decoding Arrhythmias & Sudden Death	42
1.8. Approach To Cardiology Clinics	58
1.9. Approach To Congenital Heart Disease	65
1.10. Pericardial Disorders& Cardiac Infections	73
1.11. Valvular Heart Disease	80
2. ENDOCRINOLOGY	
2.1. Introduction to endocrinology & Pituitary Disorders	
2.2. Introduction to Diabetes Mellitus	92
2.3. Management of Diabetes Mellitus	98
2.4. Complications of Diabetes Mellitus	104
2.5. Adrenal & Genetic Endocrine Disorders	114
2.6. Thyroid &Parathyroid Disorders Part-1	122
2.7. Thyroid &Parathyroid Disorders Part-2	130
,	138
3. NEUROLOGY	
3.1. Ischemic Stroke	144
3.2. Hemorrhagic Stroke	156
3.3. Stroke Localization	162
3.4. Dementia & Movement Disorders	172
3.5. Headaches	177
3.6. Weakness & Neuromuscular dysfunction	179
4. PULMONARY MEDICINE & CRITICAL CARE	
4.1. Pulmonary Function Testing	184
4.2. Venous Thromboembolism	191
4.3. Pulmonary Hypertension	195
4.4. Obstructive Lung Diseases	197
4.5. ILD & Pleural Disorders	201

<u>Ch</u>	apter	Name	Page No.
	4.6.	Introduction to Respiratory Failure	206
	4.7.	Rapid Sequence Intubation in Critical Care	211
	4.8.	Mechanical Ventilation and ARDS	218
5.	NEPH	HROLOGY	
	5.1.	Acute Kidney Injury	222
	5,2.	Chronic Kidney Disease & Renal Transplantation	229
	5.3.	Sodium and Potassium Disorders	233
	5.4.	Acid Base Disorders	237
	5.5.	Hypertension	240
	5.6.	Glomerular Disorders	243
6.	RHE	UMATOLOGY	
	6.1.	Arthritis	252
	6.2.	Connective Tissue Disorders (SLE, Scleroderma, Sjogren and Reynaud)	260
	6.3.	Vasculitis	265
	6.4.	Inflammatory Myositis, IgG4 RD & Amyloidosis	272
7.	MED	ICAL ONCOLOGY	
	7.1.	Oncology Basics - 1 (Etiology & Prevention of Cancer)	274
	7.2.	Oncology Basics - 2 (Oncogenic Mechanisms)	280
	7.3.	Cancer Biology - 1 (Growth Factors & Transcription Factors)	284
	7.4.	Cancer Biology - 2 (Cell Cycle, DNA Repair & Cell Death)	288
	7.5.	Cancer Biology - 3 (Other Hallmarks & Familial Cancer Syndromes)	291
	7.6.	Cancer Therapies - Basic Principles	297
	7.7.	Cancer Therapy - Side Effects	302
	7.8.	Oncologic Emergencies & CUP	307
	7.9.	Paraneoplastic Syndromes - Part 1	312
	7.10.	Paraneoplastic Syndromes - Part 2	314
	7.11.	Radiation Oncology - Part 1	317
	7.12.	Radiation Oncology - Part 2	322
	7.13.	Breast Cancer	328
8.	HEM	ATOLOGY & TRANSFUSION	
	8.1.	Approach to Anemia Part - 1	334
	8.2.	Approach to Anemia Part - 2	339
	8.3.	Bleeding Disorders 1 - Thrombocytopenia	343
	8.4.	Bleeding Disorders 2 - Platelet Function Defects	349
	8.5.	Hematological Neoplasm Part - 1	354
	8.6.	Hematological Neoplasm Part - 2	359

Chapt	<u>ler Name</u>	Page No.
8.7	Basics of Transfusion Medicine - ABO: Rh Systems	366
8.8.	Blood Products in Transfusion Medicine	369
8.9.	Transfusion Reactions	373
9. GA	STROENTEROLOGY	
9.1.	Approach to LFT and Hepatitis	376
9.2.	Cirrhosis & Portal Hypertension	384
9.3.	Gastrointestinal disorders	389

Chapters LEAST IMPORTANT for FMGE aspirants:

Cardiology: Stable Ischemic Heart Disease (except basics like indications of CABG, PCI)

Endocrinology: Genetic Disorders (MEON's & Autoimmune polyglandular Syndromes)

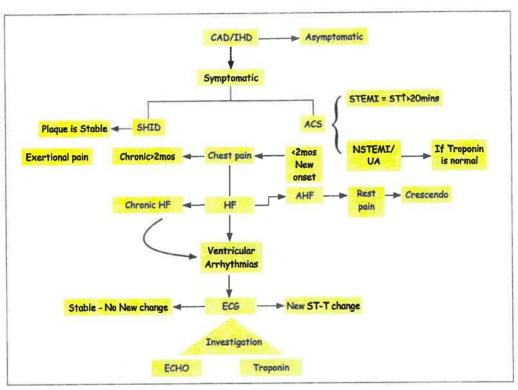
Neurology: Movement Disorders other than Parkinson's Disease

Pulmonary and Critical Care: Complications of Mechanical Ventilation

Nephrology: Rare types of AKI and Details of Renal Transplantation

Rheumatology: Infectious Arthritis, Adult onset Still's Disease, Cryoglobulinemia and Amyloidosis

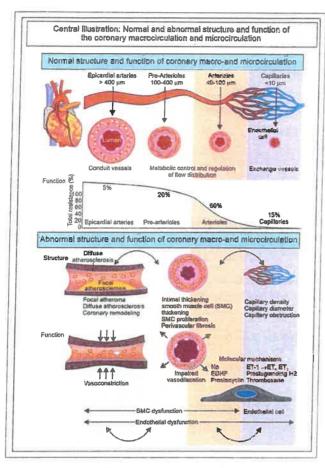
Medical Oncology: Cancer Biology and Radiation Oncology


Hematology and transfusion: Details of Blood Products & Platelet Function defects

Gastroenterology: Details of IBD treatment, Metabolic Liver diseases except Wilson disease

Section 1 Cardiology

1.1 Chapter


STABLE ISCHEMIC HEART DISEASE (SIHD) - DIAGNOSIS

Coronary Blood Flow - Basics

- CBF contributes to ~ 5% of the total cardiac output and may ↑ up to 5x with exercise (↑ Workload)
 - Normally, the coronary microcirculatory resistance constitutes the only resistance to myocardial flow & the epicardial vessels (LMCA, LAD, LCX, RCA) are just conductance vessels
 - Epicardial vessels don't offer any sort of resistance and are diseased which are looked up on the Angiography and not the microvasculature.
 - 95% of the resistance is offered by the microvasculature to the coronary blood flow

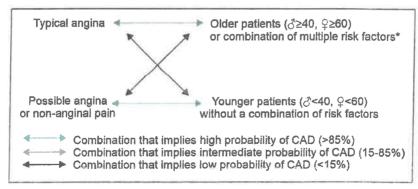
- and these vessels are adaptive in physiological as well as pathological conditions.
- With ≥ 70% stenosis, the trans-stenotic flow drops during exertion & with ≥ 90% stenosis, the trans-stenotic flow drops at rest.
- ↑Resistance in the epicardial vessels \(\psi\) the
 flow to the microvasculature due to which
 the pressure \(\psi\)
- Collaterals are formed due to the Pressure Gradient, i.e., pressure difference between the diseased and the normal vessels
- > 80% of left coronary flow & ~ 50% of right coronary flow occurs in diastole due to differential systolic compression of microvasculature

- STEAL PHENOMENA Non diseased vessels are going to get more blood and diseased vessels will have less blood flow.
 - There are 2 types of STEALS, Coronary Steal and Collateral Steal.
 - During Exercise, dilation of the microvasculature (the diseased vessels which are maximally dilated won't dilate further but the normal vessels will dilate)
 → Resistance increases which will lead to increase blood flow to the normal vasculature

and in contrast the flow is reduced in the collaterals as well as the stenotic vessels.

- Drugs which can induce STEAL phenomena are:
 - Adenosine
 - Dipyridamole
 - Hydralazine (C/I in CAD)
 - Nitroprusside (arteriolar vasodilator)
 - Volatile General Anesthetics

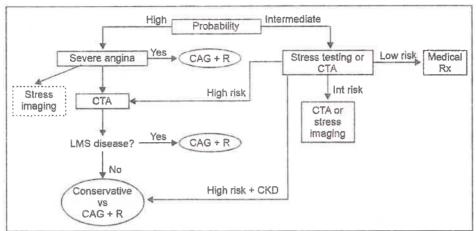
Therefore, during exercise or adenosine infusion, extensive microvascular dilatation occurs and requiring an extensive increase in flow to fill the dilated circulation (since the flow cannot increase across a flow-limiting stenosis, ischemia occurs)


· Angina features:

- Discomfort in chest (Levine sign), jaw, shoulder, back, arm, epigastrium
- Aggravated by exertion and / or emotional stress
- Relieved by rest and / or NTG (< 30s to 5 min)
 - 3/3 features = typical angina, 2/3 features
 atypical angina, 0 or 1 feature = noncardiac
 - Noncardiac chest pain: 3P's = Pleuritic,
 Positional and Palpable

· CCS Angina classification:

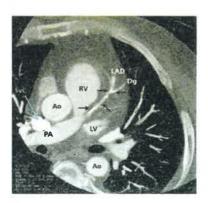
I	No angina with ordinary activity. Angina only with strenuous, rapid, or prolonged exertion
п	Slight limitation of ordinary activity (Angina after > 2 blocks / > 1 flight of stairs)
III	Marked limitation of ordinary activity (Angina after 1-2 blocks / < 1 flight of stairs)
IV	Inability to carry out any physical activity without angina or angina occurring at rest


· Risk Stratification:

Stable Ischemic Heart Disease (SHID) - Diagnosis

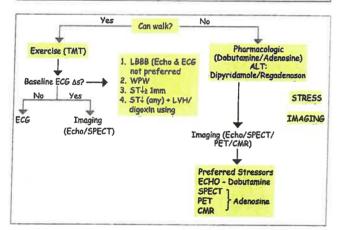
Risk Factors: DM/dyslipidemia/HTN/Active smoking

· Algorithm for Evaluation of Chronic Chest Pain

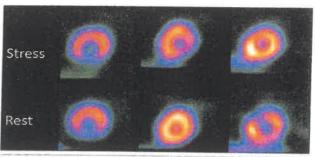

CCTA vs Stress Testing/Imaging

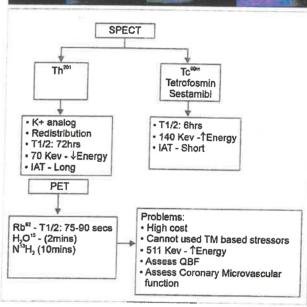
	Low → no testing necessary → option for CAC for ASCVD risk stratification
Pretest likelihood of CAD	Intermediate high \Rightarrow younger patient (< 65 y of age) OR less obstruction CAD suspected \Rightarrow CCTA favored
	Intermediate high → older patient (> 65 y of age) OR more obstructive CAD suspected → stress testing favored

	Favors use of CCTA	Favors use of stress imaging
Goal	Rule Out Obstructive CAD Detect Nonobstructive CAD	Ischemia-guided management
Availability of expertise	High-quality imaging and expert int	terpretation routinely available
Likelihood of obstructive CAD	« Age < 65 y	• Age > 65 y
Prior test results	· Prior functional study inconclusive	Prior CCTA inconclusive
Other compelling indication	 Anomalous coronary arteries Required evaluations of aorta or pulmonary arteries 	 suspected scar (especially if pet or stress CMR available) suspected coronary microvascular dysfunctional (when PET or CMR available)


Note: Myocardial viability - FDG-PET is done (†1/2 = 110mins/2hrs)

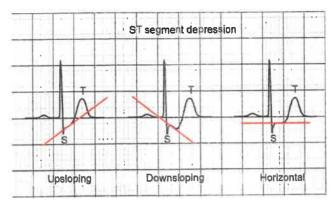
· CCTA


- Stress Testing Indications:
 - To diagnose obstructive CAD
 - Evaluate change in clinical status in a known CAD
 - Risk stratification after ACS
 - Evaluate exercise tolerance
 - Localize ischemia
- Stress Testing Contraindications:


Absolute	Relative
Acute MI < 48 h	LMCA disease
High-risk UA	Moderate valvular stenosis (AS),
Acute PE	Severe HTN
Severe AS	HCM
Uncontrolled HF	High-degree AVB
Uncontrolled	Severe electrolyte
arrhythmias	abnormalities
Myopericarditis	
Acute AoD	

Choosing a stress test depends on:

- · LBBB
- · Ability of a patient to exercise
- Imaging modality



	٤	tress testing Informa	tion		
	ECG	Stress echocardiography	SPECT MPI	PET MPI	Stress CMR MPI
Patient capable of exercise	1	✓	✓	×	×
Pharmacologic stress indicated	×	✓	1	√	✓
Quantitative flow	×	×	×	1	4
V dysfunction / scar	×	✓	/	V	1

Stable Ischemic Heart Disease (SHID) - Diagnosis

· Treadmill ECG:

Target & Protocol for Exercise Stress

- Reach Target HR, which is 85% of the maximal HR (=85% of [220 age]) PLUS achieve a good workload
 ≥6-7 METs (≥ 5 minutes of the Bruce protocol)
- (OR) Attain high-risk criteria before this goal

· Standard Bruce Protocol

Stage	Speed mph (kph)	Inclination (°)	Duration (min)	MET
1	1,7 (2.7)	10	3	5
2	2.5 (4.0)	12	3	7
3	3.4 (5.4)	14	3	10
4	4.2 (6.7)	16	3	13
5	5.0 (8.0)	18	3	16
6	5.5 (8.8)	20	3	18
7	6.0 (9.6)	22	3	20

Duke's Treadmill Score =

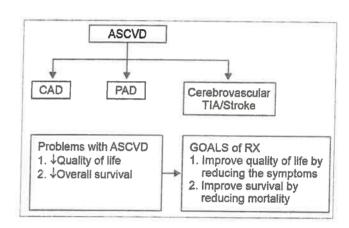
Angina Index -

- 0: no angina
- · 1: Non-limiting Angina
- · 2: Limiting Angina

Level	Score	Management
Low	≥ +5	Medical Treatment
Intermediate	+4 to -10	Stress imaging (SPECT)/ CCTA
High	≤ -11	CCTA/medical Rx/ CAG-R

Risk Stratification After a Stress Test

- High risk features: (Annual rate of death > 3%)
 - Physiologic:
 ✓ or fail to
 ↑ BP by > 20/10mm
 Hg, Angina
 @
 < 4 METS, Chronotropic incompetence/ vagal failure
 - ECG: DTS ≤-11, ST \$\psi\$ ≥2 mm (OR) ≥1 mm in stage 1 (OR) in ≥5 leads (OR) ≥5 min in recovery, ST \$\phi\$, VT
 - Echo/MPI: Large/multiple (≥2) reversible perfusion defects, ≥ 3 regions of WMA in Echo.


1.2 Chapter

STABLE ISCHEMIC HEART DISEASE (SIHD) MANAGEMENT

Basic Terms

ASCVD/CV Disease - Atherosclerotic Cardiovascular Disease (Macrovascular)

- · MACE Major Adverse Cardiac Events
 - Death due to some CV problem
 - Non-Fatal MI
 - Non-fatal Stroke UA/HF

Management of CCS/SIHD

↓ Mortality	↓ Symptoms
ASA (clopidogrel if ASA allergy - 75mg/d) Dose - 75mg/day (81mg/d)	1st choice: BBs (Alternatives ND-CCBs) + SA Nitrates PRN
Statins ± ezetimibe/PC5K9i (to keep LDL < 70) High intensity statins – use Max tolerance dose Rosuvastatin – 20 – 40 mg/d Atorvastatin – 40 – 80 mg/d PC5K9i – Evolocumab, Alirocumab	2nd choice: D-CCBs, LA Nitrates, Ranolazine, Nicorandil, Ivabradine, trimetazidine, EECP
HTN control (ARBs + ACEi preferred especially if EF < 50%, DM, CKD) DM control (preferably SGLTi/GLP1RA)	Consider Revascularization - for refractory
Smoking cessation (50% ↓ in risk of MI and stroke < 1 year) Risk ~ never smokers in 3-5 years	- angina

- · Antianginals:
 - a1 vasoconstriction
 - β1 ↑ Inotropicity / ↑ Chronotropicity
 - \$2 vasodilation/bronchodilation
- · B-Blockers -
 - 1st Gen Non selective = Propranolol / Sotalol (AAD)/ Nadolol/ Timolol/Pindolol (ISA)

- 2nd gen Selective \$1 -
 - · Atenolol
 - Metoprolol
 - Esmolol
 - Bisoprolol
 - Acebutolol
- 3rd Gen Vasodilator β-blockers

Non-Selective	Selective	
Labetaiol	Nebivolol (↑ NO release Betaxalol (CCB)	
Carvedilol (Additional a1 blockage)		
	Celiprolol (B2 +) (ISA)	

Contraindications of β -blockers

- 1. Severe Reactive Airway Disease (BA/COPD)
- 2. Avoid in acute HF (pulmonary edema)
- 3. Hemodynamic instability
- Low HR (HR < 60 initiation not recommended, HR
 40 withhold β-blockers)
- 5. 2°/3° AV block
- 6. PR interval > 0.24secs

Side effects of B-blockers

Cardiac

- 1. Severe bradycardia √HR
- 2. VCO → ↑HF
- 3. AV nodal block
 - These effects are synergistic if β-blockers are used along with Non-dihydropyridine CCBs i.e., verapamil and diltiazem.

Extracardiac

- 1. Exacerbations of BA/COPD
- 2. Exacerbate some vascular problems Raynaud's/
- Metabolic S/E Hyperkalemia (个 risk with renal failure) / hyperglycemia (more in prediabetics) / hypertriglyceridemia

Not due to B receptor blockage

- 1. GI Intolerance
- 2. Vivid dreams
- 3. Depression
- 4. Sexual dysfunction

Calcium Channel Blockers

ND-CCBs	D-CCBs	
Verapamil/ Diltiazem	DIPINES	
Poor vasodilators	Potent vasodilators – cause reflect tachycardia (more with short acting drugs – Nifedipine)	
Act on the heart – negative inotropism, Chronotropism and AVN blockade (Antiarrhythmic drugs – Class IV)	×	
Side effects – Headache, peripheral edema, gingival hyperplasia		

· Long-Acting Nitrates -

- ISDN
- ISMN
- E. Tetranitrate
- Penta Tetranitrate
 - One should provide adequate Nitrate free intervals of at least 12-14hrs/day to prevent the development of tolerance.

Ranolazine - Dual Effect

- Inhibit INA
- Inhibit PFOX to inhibit the beta-oxidation process, Ranolazine inhibits LC3KAT thereby forcing the heart to use more glucose in which less ATP will be consumed. Therefore, causing relief of Angina.
- Act as an anti-anginal drugs, cause slight ¹QTc. Reduce HbA1c-approx. 1% in diabetics (only seen in patients with HbA1c >8%)
- Side effects- headache, flushing and constipation (MC)

· Nicorandil -

- Nitrate like action Upreload
- K+ channel opening ability
- Most important Side Effects mucosal ulcers oral and anal

· Ivabradine -

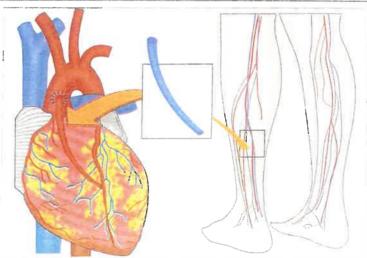
 Funny current inhibitor exclusively in the SA node - reducing the HR overall

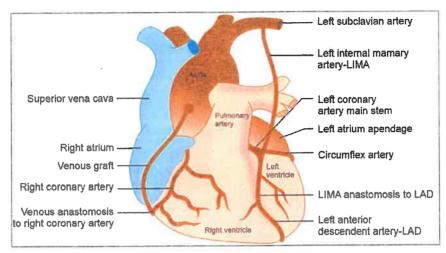
- Side Effects Bradycardia, visual luminous phenomenon
- At the time of initiation HR >70 + Sinus rhythm

Trimetazidine -

- PFOX inhibition
- Side effects movement disorders (like chorea, parkinsonism)

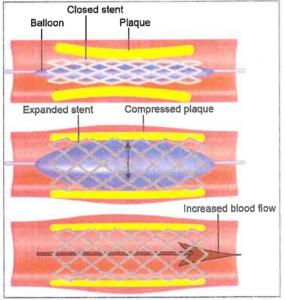
· Others: EECP -


- Indication refractory angina
- Wrap pneumatic cuffs around the legs and inflate sequentially during diastole resulting in ↑ in diastolic pressure →↑CBF
- Long term effect is by VEGF cause neovascularization and angiogenesis
- Sessions 1hr/day x 5d/week x 7 weeks = 35 sessions/ 35hrs


- Revascularization:
- · Indications:
 - LMS disease- regardless of angina > Absolute indication for CABG - improves survival
 - Severe/refractory angina (CABG vs PCI),
 CABG if -
 - 3VD PLUS DM/SYNTAX > 22
 - 2VD with proximal LAD PLUS DM/ SYNTAX > 22

· CABG Grafts:

Types of Graft	Name	Patency	Atherosclerosis	Comments
SVGs	Free	Low (only 50% patent at 10 years)	Yes	~10% occlusion rates in 1st month Can develop Saphenous neuralgia
LIMA	In situ	High (90% at 10 years)	No	Most remain patent for life! LIMA does NOT develop atherosclerosis
RIMA	Free	High	No	Risk of sternal wound infection
Radial Free		Average	Yes	High rates of vasospasm and can develop atherosclerosis



Free SVG Graft

LIMA in Situ Graft

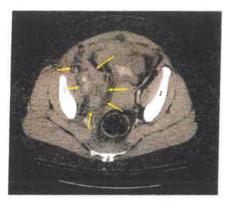
Stent & Types

1st a wire is pushed through the stenotic lesion and then a balloon is placed via a catheter in that area.

By inflating the balloon, the stent expands and pushes the plaques to the sides.

Once the stent is expanded, it will consolidate the area so that the vessel won't go under restenosis, so the blood flow will be restored and be patent for a long period of time.

2 types of Stent -


BMS	Drug regulatory stent	
No drug coating	Drug coating with mTORi = Sirolimus/ Everolimus/ Paclitaxel	
Advantage - Endothelium will proliferate and cover the stent	These stents are coated with drugs like sirolimus which will inhibit the endothelial proliferation.	
Faster endothelization - risk of thrombosis if for a short period of time, so can use short DAPT - Aspirin + P2Y12ri (Clopidogrel/Prasugrel/Ticagrelor) for > 1month. After 1 month, monotherapy can be given i.e., Aspirin.	Slow endothelisation – use of longer DAPT for a period of >6mos and later continue with monotherapy.	
Disadvantage - BMS stent can continuously stimulate the endothelium which can aggressively cause neointimal proliferation resulting in high rates of restenosis.		

Post PCI complications

Complication	Features	Rx	
Vascular access compli	cations		
Groin hematoma	Groin swelling	Most resolve with manual compression (consider AC reversal)	
Retroperitoneal bleed	↓ Hct ± back pain, ↑ HR & ↓ BP (late). CT abdomen is suspected	ABC's + reverse/stop AC	
Vascular damage			
Pseudoaneurysm	triad of pain, expansile mass, systolic bruit. Diagnosed with US.	Treat if painful Rx or size >2 cm Options - directed compression, thrombin injection for surgical repair	
AV fistula Continuous bruit. (US can Diagnose)		surgical repair if large or symptomatic	
LL ischemia (emboli, Classic ALI (6Ps) Urgent Angio (CTA/DSA) if dissection, clot) suspected		Percutaneous or surgical repair	

PCI - other complications

- Peri-PCI MI type 4A MI (troponin ↑≥5x URL)
- · CI-AKI
- Cholesterol emboli syndrome (intact pulses)
- · In stent thrombosis type 4B
- · In-stent restenosis

Preop management of antiplatelets

Agent	D/C Prior to Surgery	
Clopidogrel	5 days	
Prasugrel	7 days	
Ticagrelor	5 days	
2B/3A	3 hours	
Enoxaparin	12-24 hours	
Fondaparinux	24 hours	
Bivalirudin	4 hours	

Note on vasospastic angina

- Most are smokers, relatively young and have resting angina (may be severe)
- · Criteria:
 - Resting angina (typically at night & lasts 5-15 mins) & nitrate responsive
 - Transient ST \triangle (ST↑ or ST \lor)
 - Coronary artery spasm on CAG (>90% constriction) - can do optional provocative testing with Ach/ergonovine/ hyperventilation
- Ix:ECG and angiography (invasive or CTA) to r/o CAD
- Rx:CCBs (NDHP) & Nitrates
- Drugs to be Avoided:non-selective BBs, triptans and 5-FU
- Long term prognosis is good (survival ~ 95% at 5 years).

1.3 Chapter

ACUTE CORONARY SYNDROMES

ACS - Basics

Reasons for the instability of the plaque

- Plaque erosion (< 1/3rd)
- Plaque rupture (most common >2/3rd) \rightarrow thrombus formation \rightarrow Acute ischemia \rightarrow ACS
- . Types of ACS: -

Spectrum	UA	NSTEMI	STEMI	
Coronary thrombosis	Subtotal occlusion - some flow Coronary artery Plaque Multifocal & Subendocardial Ischemia		Total Occlusion - No Flow Coronary artery Plaque Focal & Transmural Ischemia	
History	New onset angina, resting or crescendo angina		Angina at rest	
Patient phenotype	Relatively old with multiple comorbidities		Relatively young with limited comorbidities	
Disease	Typically, multivessel disease in most, ↑ collaterals		Single culprit vessel, √ collateral formation	