

Cerebellum Get the balance right

Cerebellum Pathology

For the Students By the Teachers

MEGIOUNEL

Table of Content

Cha	pter Name	Page No.	Cha	pter Name	Page No
Cell	Injury		4.9	Autoimmune Hemolytic Anaemia	79
1.1	Concepts of Cell Injury & Reversible Cell	Injury 1	4.1	0 Introduction to WBC Disorders	81
1.2	- , ,	3	4.1	1 Acute Leukemias	83
1.3	•	5	4.1	2 Chronic leukemias	86
1.4	• • •	9	4.1	3 Myelodysplastic Syndromes	89
1.5	4 4	11	4.1	4 Hodgkin Lymphoma	91
1.6	Intracellular Accumulations	12	4.1	5 Non Hodgkin Lymphoma	94
1.7	Special Patterns of Cell Death	17	4.1	6 Multiple Myeloma	96
Infla	mmation		4.1	7 Concepts of Bleeding Disorders	100
			4.1	8 Platelet Disorders	103
2.1	Introduction & Vascular Changes	19	4.1	9 Von Willebrand Disease & Hemophilias	105
2.2	Cellular Changes	21	4.20	Blood Transfusion	108
2.3	Cellular Chemical Mediators (Part-1)	24	4.2	Blood Transfusion Reactions	110
2.4	Cellular Chemical Mediators (Part-2)	26	4.22	2 Miscellaneous Disorders	114
2.5	Plasma Chemical Mediators	28	4.23	3 Myelodysplastic Syndrome	116
2.6	Chronic Inflammation & Wound Healing	30	Gastı	ointestinal System	
2.7	NET and Cell with in Cell Phenomenon	34	5.1	Esophageal Disorders	118
Imm	anity		5.2	Gastritis & Peptic Ulcer Disease	122
3.1	Basics of Immune System Activation	36	5.3	Gastric Tumors	124
3.2	Major Histocompatibility Complex	41	5.4	Intestinal Malabsorption Disorders	127
3.3	Hypersensitivity Reactions	43	5.5	Intestinal Polyps & Colon Cancer	129
3.4	Tolerance	46	5.6	Inflammatory Bowel Disease	131
3.5	Organ Transplantation & Graft Versus	47	5.7	Congenital GIT Anomalies	133
3.6	Amyloidosis	49		_	155
3.7	Autoimmune Disorders	52	Cardi	ovascular System	
3.8	Immunodeficiency Disorders	55	6.1		134
3.9	Systemic Lupus Erythematosus	57	6.2	Ischemic Heart Disease	141
Heam	atology		6.3	Rheumatic Fever	145
4.1	Basic Concepts of Hematology	62	6.4	Cardiac Tumors	147
4.2	Stages of RBC Development	64	6.5	Infective Endocarditis	149
4.3	Iron Deficiency Anaemia	64	Respi	ratory System	
4.4	B12 & Folic Acid Deficiency Anemia	66	7.1	Obstructive Lung Disorders	151
4.5	Hemolytic Anemia	69	7.2	Restrictive Lung Disorders	155
4.6	Hereditary Spherocytosis & G6PD Deficience		7.3	Pneumoconiosis	157
4.7	Hemoglobinopathies	72	7.4	Pneumonia	159
4.8	Paroxysmal Nocturnal Hemoglobinuria	77	7.5	Lung Tumors	160

Chapte	er Name Pa	ge No.	Chapter Name	Page No.
7.6 7.7 7.8	Pulmonary Hypertension Sarcoidosis and Hypersensitivity Pneumonit Adult Respiratory Distress Syndrome	162 dis 163	Hepatobiliary System 11.1 Bilirubin metabolism 11.2 Cirrhosis	216 219
7.9 Renal	Pulmonary Tuberculosis System	167	11.3 Hepatic Tumors Genital Tract	223
8.1 8.2 8.3 8.4	Nephritic Syndrome Nephrotic Syndrome Nephrolithiasis Renal Tumors	170 176 182 184	12.1 Male Genital Tract 12.2 Female Genital Tract Endocrinology	225 233
8.5 Neopl 9.1	Congenital Renal Disorders asia Basic Concepts of neoplasia	186 188	13.1 Thyroiditis 13.2 Thyroid tumor 13.3 Parathyroid gland 13.4 Adrenal Disorders	242 246 249 252
9.2 9.3 9.4 9.5	Cancer Genes Clinical aspect of Neoplasia Etiological Factors of Neoplasia Diagnosis of Cancers	194 196 199 201	Breast 14.1 Breast Disorders Genetics	254
CNS 10.1	Neurodegenerative Disorders CNS Tumors	205 209	 15.1 Introduction To Genetic 15.2 Specific Cytogenetic Disorders 15.3 Single Gene Disorder 15.4 Non-Classical Inheritance Disorders 	260 264 267 270

Section 1 Cell Injury

1.1 Chapter

CONCEPTS OF CELL INJURY & REVERSIBLE CELL INJURY

Most common cause of cell injury at the level of cell \rightarrow Hypoxia ($\downarrow \downarrow O_2$)

Types of Hypoxia

1.	Hypoxic hypoxia	High altitudes, COPD
2.	Anaemic hypoxia	Anaemia, CO poisoning
3.	Stagnant hypoxia	Ischemia (MC cause), Arterial obstruction >> Venous obstruction
4.	Histotoxic hypoxia	Cyanide poisoning

Sensitivity of different cell for O2 availability -

CNS (Neurons) » Cardiac Cells » Skeletal Muscle fibres » Fibroblast

Extremely sensitive areas

- · All territories of brain
- · Subendocardial tissue
- Watershed areas in intestine (Griffith point, splenic flexure etc.)

REVERSIBLE CELL INJURY

- ↓O2 Mitochondrial activity ↓↓ Cellular manifestations occur
- 1st organelle affected in reversible cell injury:
 Mitochondria

A) Cell membrane:

- ATP↓ Na+ accumulation (as Na+-K+ Pump activity ↓) - 1water (Hydropic Changes).
- Hydropic change (Cell swelling) is the 1st microscopic change.
- Outpouching occurs Membrane blebs Formation.
- Fatty changes due to accumulation of Triglycerides in Heart & Liver.

B) Endoplasmic reticulum:

- Due to \downarrow ATPs in Cell \downarrow RER activity \rightarrow \downarrow Protein synthesis
- ATP degradation results in ↓ activity of SER ↑↑ misfolded protein accumulation.

C) Nuclear changes:

- Due to accumulation of Lactic acid & Pyruvic acid - Clumping of chromatin.
- Due to excess H2O in cells, a part of Membrane from cell organelle or cell membrane curling upon itself

 Appear as spiral structure known as Myelin Figures.

1.2 Chapter

CELLULAR ADAPTATION

1. Hypertrophy

- Hyper excessive, trophy growth
- Seen in Permanent cells (Muscle cells, Cardiac cells & Neurons)
- Increase size of cells leads to increase function of cells
- · increased synthesis of structural protein
- Both physiological & pathological → benign condition.

Physiological	Pathological	
Pregnancy, Puberty	Cardiac hypertrophy due to HTN	
or Powerlifting	or Valvular disease	

2. Hyperplasia

· Increase in number of cells

Physiological	Pathological
Uterus & Breast - pregnancy	Endometrial hyperplasia (Can progress to Cancer)
BM: hemolytic anaemia (^ erythropoetin)	Prostatic hyperplasia
In case of Liver Donation	HPV (warts etc.)

3. Atrophy

- Absence of growth
- Associated with decrease size and decrease function
- Reversible change, but can increase chances of cancer.
- 2 pathways responsible for it: Ubiquitin Pathway (via Proteasomes) and Autophagy (Defense mechanism)

Physiological	Pathological
Uterus (Post-parturition)	Disuse atrophy
Fetal development	Denervation atrophy (E.g. Polio)
	Reduced nutrition (Cachexia)
The State of the S	Ischemic atrophy (E.g. Alzeimer's disease)
	Pressure atrophy (E.g. Kidney stones)

4. Metaplasia

- Change in nature of cells in presence of stress factor.
- On stress, change in nature stem cells → metaplasia
- · Benign & reversible in nature
- Can progress to cancer if not treated or if stress is persistent.

Examples

- A. Epithelial metaplasia
 - 1. In lungs smoking leads to squamous metaplasia (commonest example).
 - Ciliated columnar ↔ squamous epithelium

Cellular Adaptations

- If change persist squamous cell carcinoma of lungs
- 2. In the stomach, GERD causes intestinal columnar metaplasia of esophagus (Barrett esophagus)

i.e. intestinal columnar cells replace the normal stratified squamous cells of lower esophagus.

[NOTE - Barrett esophagus - Goblet cells have mucin which is identified by Alcian blue stain

- 3. Urinary bladder: Normal transitional epithelium converted into squamous cells because of Schistosoma infection.
- 4. Vitamin A deficiency → Squamous epithelium converted to Keratinised Squamous epithelium.
- B. Connective tissue metaplasia

Myositis ossificans - after trauma due to haemorrhage the muscle is replaced by bone like tissue.

- 5. Dysplasia
 - · Disordered cell growth.
 - · High chances of Cancer development.
 - Due to excessive cell growth → Increased Mitotic figures.
- E.g. HPV infection in cervical epithelium \rightarrow Mitosis occur throughout the epithelial thickness with altered N:C ratio.

Cell production defects:

- Aplasia no production of cells. E.g. Unilateral renal agenesis.
- Hypoplasia Decreased production of cells.
 E.g. Turner syndrome (Streak gonads).

1.3 Chapter

IRREVERSIBLE CELL INJURY

Persistent hypoxia - decrease mitochondrial function $\rightarrow \downarrow \downarrow \downarrow \downarrow$ ATP leads to 11 Ca²⁺ inside cell.

- Increase calcium causes
- 1. Mitochondria dysfunction:
 - · Mitochondrial/amorphous densities
 - It leads to further decrease in concentration of ATPs and the cycle continues.
- 2. Enzymes activation:
 - Lysosomal enzymes → Autolysis (cell death)
 - · Phospholipase (Cell membrane damage)
 - Nucleases → Nuclear changes occur:
 - 1. Nucleic acid condensation Pyknosis (Inkdot nucleus)
 - 2. Nucleic acid material fragment Karyorrhexis
 - 3. Complete breakdown of nuclear material karyolysis (Nucleus disappear)

Smear Pattern

Clinical use

- · Reversible cell injury in cardiac tissue is angina
- Irreversible cell injury in cardiac tissue is Myocardial infarction; associated with increased troponins in blood (Use to diagnose Myocardial Infarction)

NECROSIS

 Morphological changes in a tissue after cell death occurs.

Subtypes of necrosis

- 1. Coaquiative necrosis:
 - Most common type of necrosis.
 - · Most common cause ischemia
 - · Seen in all organs of the body except CNS.
 - Neutrophilic infiltration seen in coagulative necrosis.
 - · TOMBSTONE APPEARANCE present.
 - Zenker's degeneration → seen in patients of Typhoid.

Features seen -

- · Increased Eosinophilia
- · "Moth eaten" cytoplasm
- · Glassy appearance
- · Nucleus disappear

Infarct:

- Localised area formed due to ischemia, usually triangular in shape.
- Apex of infarct is towards the direction of sites of obstructions.

Red infarct	White infarct
Found in organs with loose connective tissues.	Found in an organ with end arterial blood supply.
Found in organs with dual blood supply like lungs or liver.	Particularly in solid organs. E.g. Heart, kidney
Venous occlusion	Arterial occlusion
Dual blood supply	Single blood supply (Solid organs)
Reperfusion injury	No reperfusion

2. Liquefactive necrosis (aka Colliquative necrosis)
Hydrolytic enzyme activation leads to damage to
tissue structure. Seen with CNS ischemia and
pyogenic infections (eg Staph aureus infection)

3. Caseous necrosis:

- It is like cheese-like necrotic material.
- Combination of Coagulative necrosis + Liquefactive necrosis, but coagulative necrosis is the most predominant contributor.
- Found in Tuberculosis (due to Mycolic acid), fungal infection like (histoplasmosis, coccidioidomycosis = valley fever) & syphilis.

- · Granulomatous reaction is present.
- Macrophages (form Granuloma) & lymphocytes infiltration seen.
- Langerhans giant cells are associated with tubercular focus.

4. Fat necrosis:

- Found in organs with excess fats (Nonenzymatic) or with increased concentration of lipases (Enzymatic).
- Found in injury to breast tissue or injury to omentum tissue and pancreatitis.

Acute pancreatitis

- Gallstones or alcohol → Lipase activation → lipids broken down into fatty acid.
- With Ca²⁺, Fat can form Chalk-like deposits.
- Fatty acid combines with Ca²⁺ → Serum Ca²⁺ level drops & it is an important prognostic factor to know the severity of pancreatitis.

In Pancreatitis: 2 types of necrosis

- 1) Pancreas Liquefactive necrosis.
- 2) Peri pancreatic fat Fat necrosis.

5. Fibrinoid Necrosis:

Endothelial cell injury leads to immune complex formation, damage to endothelial cells and deposition of plasma protein in the vessels wall. Seen in

Irreversible Cell Injury

- Malignant hypertension
- · Aschoff body in Rheumatic heart disease.
- Preeclampsia in pregnant females.
- Immune complex disorder (or Type 3 hypersensitivity reaction)

6. Gangrene

Dry gangrene	Wet gangrene	Gas gangrene
	Ischemia + secondary infection	Sub type of wet gangrene
Coaquiative necrosis	Liquefactive necrosis	Seen with Clostridium welchii (Clostridium perfringens)

1.4 Chapter

- Caspase dependent programmed cell growth.
- Caspase → Cysteine containing protease enzyme which break down the targeted protein at the site of aspartic acid.
- It is controlled by genes and it affects a single or a small group of cells.

Pro apoptotic genes (BH1-3)	Anti-apoptotic genes	Apoptosis initiators or Sensors
BAK Gene	BCL-2 Gene (Most Important)	BIM Gene
BAX Gene	BCL XL Gene	BAD Gene
p53 Gene	MCL1 Gene	PUMA Gene
Glucocorticoids	Sex (Love) Steroids	NOXA Gene

 BCL-2 → act as Gatekeeper of mitochondria and prevent outward movement of cyt-C, Underactivity of BCL-2 and overactivity of BAX & BAX causes Cyt-c leakage leading to apoptosis.

Physiological apoptosis

- · Embryogenesis
- Hormones dependent Involution like Breast tissue and Endometrial cells.
- Removal of tail cells present in developing foetuses.
- End of Immune response
- · Elimination of Self reactive cells
- Separation of fingers due to death of cells present between fingers, if apoptosis fails to occur fingers will not separate resulting in a condition known as syndactyly.

Pathological apoptosis

- DNA damage
- Viral infection of hepatitis councilman body
- Accumulation of misfolded proteins
 Alzheimer's, Parkinson disease
- Duct obstruction → Atrophy

Apoptosis

APAF - Apoptosis activating factor

TNFR - Tumour Necrosis Factor Receptor

FADD - FAS Associated Death Domain

- CTL (Cytotoxic T-Lymphocytes) [CD8 cells] →
 on activation, release Perforin/ Granzyme and
 activate Caspases.
- FLIP protein inhibits the activation of Caspase 8 → Procaspase 8 is not activated to Caspase 8.
- Neurons have Apoptosis Initiating factor instead of APAF, which directly activates Caspases.

Clinical Importance

• BCL 2 overexpression - B Cell Lymphoma

- P53 underactivity Li Fraumeni Syndrome
- Fas FasL defect → ALP (Autoimmune Lympho-Proliferative) syndrome with features

Salient features of apoptosis

- Cell size decrease
- Chromatin condensation (HALLMARK)
- Inflammation ABSENT
- Gel electrophoresis → Step Ladder Pattern
- TUNEL technique/Staining attach specifically to the 3' end.
- Efferocytosis → Rapid Phagocytosis via Phosphatidylserine, C1q and Thrombospondin.
- · Stains Annexin V, DAPi

1.5 Chapter

FREE RADICAL INJURY

- Free radical have an unpaired electron → Lipid peroxidation (Autocatalytic reaction)
- * Free radical \rightarrow Attack Cell membrane, Nucleic acid and denaturation of Proteins

- Lipofuscin golden brown color and indicate Free Radical Injury.
- SOD mutation associated with increased risk of ALS (Amyotrophic Lateral Sclerosis).

Examples of Free Radicals Injury

- Radiation injury: Ionizing radiation falls on water and releases hydroxyl (OH-) radical
- Oxidative stress: Involved in gradual aging, cancer, and inflammation.
- · Reperfusion injury
- Transitional metals in excess (Iron in hemochromatosis, Copper in Wilson's disease)
- · Respiratory burst for the killing of pathogens.
- · Chemicals:
- 1. Carbon Tetrachloride used in dry cleaning factories (CCl₄) → upon metabolism, it forms CCl₃⁻ → causes Centrilobular Necrosis known as Fatty Change.
- 2. Paracetamol poisoning causes Liver damage
 N-acetyl Cysteine use as an antidote which
 replenishes GSH (reduced Glutathione) stores
 and neutralizes free radicals.

ANTI-OXIDANTS

- Enzymes Superoxide Dismutase, catalase & alutathione peroxidase.
- Vitamins Vit A, Vit C, Vit E. (Vit C-strongest, Vit E - fat soluble)
- Metals binding proteins like ceruloplasmin and transferrin

Note - High GSSG:GSH ratio is an indicator of high oxidative stress in a cell.

1.6 Chapter

INTRACELLULAR ACCUMULATIONS

1. Lipid Accumulation

A. Fatty changes/Steatosis

- Predominant organ Liver
- 2 types -
 - I. Macrovesicular \rightarrow Nucleus pushed to the periphery.

II. Microvesicular → Nucleus not displaced.

- Seen in cases of Diabetes mellitus, obesity, altered lipid metabolism etc.
- Frozen Section Advantage → No loss of Fat during tissue processing.
- Machine use → Cryostat
- Stain use Oil Red 'O' (Most commonly used -Red stain) & Sudan black 'B' (Black stain).

B. Cholesterol Deposition

- Xanthelasma deposition of cholesterol in and around the eye (in subcutaneous tissue)
- Atherosclerosis Deposition over vessel wall
- Niemann Pick's disease Type 'C' Deposition inside tissue.
- Cholesterolosis Deposition of cholesterol in lamina propria of gallbladder.

- * Niemann Pick's Disease
- * Cholesterolosis

2. Proteins accumulation

A. Amyloid

- Stain Congo Red → Pink/Red appearance
- Under Plane Polarised Light Apple Green Birefringence.

B.Russel bodies

 Overactive cell → Increase Endoplasmic Reticulum activity → Dilatation of Endoplasmic Reticulum

C. Intermediate filaments

3. Glycogen Accumulation

- It washed off with water during tissue processing.
- Absolute alcohol → use as a Fixative for Glycogen for staining.
- Stain → PAS (Per Acid Schiff) reagent.
- To differentiate Use Diastase treated and not treated sections along with PAS staining.

Diastase treated + PAS staining

PAS staining only

 Conditions in which Glycogen accumulations present - Von-Gierke Disease & Diabetes mellitus (Armanni Ebstein cells)

ARMANNI EBSTEIN CELLS

4. Pigmentations

A. Exogenous Pigments

A.1. Anthracosis

- Deposition of carbon in lung tissue; more in case of smokers
- In coal miners → called Coal Workers Pneumoconiosis

ANTHRACOSIS

A.2. Tattooing - Deposition of pigments/ Chemicals in skin and Dermal macrophages.

B. Endogenous Pigments

B.1. Melanin:

* Masoon Fontana Stain

* Schmorl's Stain

- Present at dermo-epidermal junction
- Stain via either Masson Fontana or Schmorl's stain.

Alkaptonuria - Black pigmentation due to melanin.

Melanosis coli - due to Chronic use of Laxatives (senna)

B.2. Lipofuscin:

- Lipid derived pigment → due to Lipid peroxidation.
- Indicator of free radical injury: lipofuscin
- Lipochrome: golden brown colour, peri nuclear in location & deposited in lysosomes.
- Seen in ageing / Protein Energy Malnutrition/ Cancer Cachexia.
- Maximum lipofuscin depositions seen in heart & liver.

- · Ageing is due to:
 - DNA damage but defective DNA helicase
 Premature ageing called WERNER syndrome.
 - 2. Decreased Telomere length in 60-70 cell cycles (Hay flick's Limit).
 - 3. Free radical injury (most important) → decrease by decrease calorie intake by 25-30% and increase Sirtuins intake (Red wine)

B.3. Hemosiderin (Iron deposition):

- Due to Ferritin (Increase hemosiderin formation)
- Staining → Prussian blue stain (Perl's reaction), Purple/Dark blue colour.
- E.g. of Iron overload Hemochromatosis, repeated Blood Transfusion (like in thalassemia), chronic hemolytic anaemia.

B.4. Calcification (Calcium deposition):

Dystrophic calcification	Metastatic calcification
 Dead / degenerated tissue 	Normal / living tissue affected
Serum calcium normal	Serum calcium increased (Hypercalcemia)
Usually localised	Usually diffuse (MC organelle is Mitochondria)
Association - RATTO	Association -
Rheumatic Heart disease	(Hypercalcemia, Hyperphosphatemia, ↑ Vit. D activity)
• Atherosclerosis	PTH - Parathyroid Adenoma (↑ Ca²*)
• Tuberculosis	PTHrp releasing tumour (↑ Ca²+)
Tumours	· Chronic Kidney Disease († PO ₄ -)
· Monckeberg's Sclerosis	• Primary hypoparathyroidism († PO ₄ -)
Infections like CMV and	Sarcoidosis, William's Syndrome (↑ Vit. D)
schistosomiasis	Paget's Disease, Multiple Myeloma etc.
	Milk-Alkali syndrome, Aluminium toxicity

Tumours having Dystrophic calcification (Mnemonic - MOST PG)

- M Meningioma, Mesothelioma
- O Ovary (Serous cystadenoma)
- 5 Salivary gland tumour
- T Thyroid (Papillary thyroid cancer)
- P Prolactinoma
- 6 Glucagonoma

Metastatic Calcification:

Tissues with highest risk (Alkaline media)

- Lungs (Most common)
- Kidneys (Deposited more in Basement membrane than Mitochondria)
- Stomach
- · Systemic Artery & Pulmonary veins
- · Most unlikely tissue Parathyroid gland
- Tetracycline Labelling Index (due to high affinity with Ca²) → Bone remodelling time.

Special stain:

- Von Kossa → Black colour
- Alizarin Red → Red colour, stain even a small amount of Ca⁺² present in the tissue.

Special Bodies:

- 1. Schaumann bodies seen in Sarcoidosis
- 2. Psammoma bodies Dystrophic calcification, seen in Papillary thyroid cancer, Meningioma, Mesothelioma etc
- 3. Asbestos Bodies In Asbestosis

