

A NEET SS (SURGERY) PREPARATION COURSE BY MARROW, WITH A TEAM OF SELECTED SUPER-SPECIALITY FACULTY

SURGERY NEET SS

UROCOGY

SURGERY

PREPARATION COURSE
BY MARROW, WITH A TEAM OF
SELECTED
SUPER-SPECIALITY FACULTY

NBBB SS SUBBB

Dr. DEVANSHU BANSAL

CONTENT

1)	IMAGING IN UROLOGY	1
2)	ULTRASONOGRAPHY & NUCLEAR MEDICINE	14
3)	INSTRUMENTS IN UROLOGY	30
4)	LAPROSCOPY & ROBOTICS	61
5)	ERECTILE DYSFUNCTION	85
6)	MALE INFERTILITY	108
7)	PRIAPISM & PEYRONIE 's DISEASE	130
8)	PROSTATE - ANATOMY & PHYSIOLOGY	154
9)	BENIGN PROSTATIC ENLARGEMENT - EPID.	167
10)	BPE - EVALUATION & MEDICAL MANAGEMENT	173
11)	BPH - SURGICAL MANAGEMENT	193
12)	PROSTATE CANCER PART 1	208
13)	PROSTATE CANCER PART 2	231
14)	PROSTATE CANCER PART 3	257
15)	RADIATION THERAPY FOR CARCINOMA PROS.	270
16)	METASTATIC PROSTATE CANCER	288
17)	TESTICULAR CANCER PART 1	297
18)	TESTICULAR CANCER PART 2	315
19)	TUMORS OF PENIS	330
20)	RENAL PHYSIOLOGY & AKI - CKD	348
21)	RENAL CELL CARCINOMA PART 1	380
22)	RENAL CELL CARCINOMA PART 2	401
23)	RENAL CELL CARCINOMA PART 3	417
24)	RENAL TRANSPLANTATION	435
25)	UROTHELIAL TUMORS - UPPER TRACT & URET.	458
26)	SPHINCTERIC INCONTINENCE IN FEMALE	474
27)	SURGICAL PROCE. FOR SPHIN. INCONTIN. IN M	493
28)	PHARMACOLOGY OF LUTS	501
29)	PELVIC FRACTURE URETHRAL INJURIES	515
30)	URINARY BLADDER CANCER PART 1	530
31)	URINARY BLADDER CANCER PART 2	540
32)	URINARY DIVERSIONS	553
33)	ANTERIOR URETHRAL STRICTURES	566
34)	POSTERIOR URETHRAL VALVE	585
35)	RENAL DYSGENESIS & CYSTIC DIS. OF KID.	592
36)	URETERAL ANOMALIES	614

37)	URINARY TRACT INFECTION - PART 1	628
38)	URINARY TRACT INFECTION - PART 2	650
39)	UROLITHIASIS - PATHOPHYSIO & MED . MGT.	670
40)	NON MEDICAL MGT . OF CALCULI	704
41)	MISCELLANEOUS TOPICS IN UROLOGY	719

INTRODUCTION

IMAGING IN UROLOGY

Radiation management

00:00:44

- Radiation exposure: Charge per unit mass of air cause by passage of radiation through tissue.
 measured in coulombs (c)/kg.
- Absorbed dose: Energy absorbed from radiation exposure.

measured in gray (Gy).

 Equivalent dose: Conversion factor applied to absorbeds dose to measure different interaction of radiation with different type of tissue.

measured in Sievert (Sv).

Conversion factor for diagnostic x rays = 1.

 Effective dose: Denotes radiation risk to a population of patients from an imaging study.

measured in Sievert (SV).

estimation of range of effective doses for various imaging modalities allows assignment of relative radiation level:

RADIATION QUANTITY	TRADITIONAL UNIT	SI UNIT	CONVERSION	CLINICAL RELEVANCE
Exposure	roentgen (R)	coulomb (C)/kg	1 C/kg = 3876 R	Charge per unit mass
Absorbed dose	rad	gray (Gy)	1 Gy = 100 rad	Energy absorbed by tissue
Equivalent dose	rem	sievert (Sv)	1 Sv = 100 rem	Absorbed energy based on tissue type
Effective dose	rem	sievert (Sv)		Biologic risk associated with absorbed energy

RELATIVE RADIATION LEVEL (RRL)	EFFECTIVE DOSE ESTIMATED RANGE	EXAMPLE EXAMINATIONS
None	0	Ultrasound, MRI
Minimal	<0.1 mSv	Chest radiographs
Low	0.1-1.0 mSv	Lumbar spine radiographs, pelvic radiographs
Medium	1–10 mSv	Abdomen CT without contrast, nuclear medicine, bone scan, ^{sear} Tc-DMSA renal scan, IVP, retrograde pyelograms, KUB, chest CT with contrast
High	10–100 mSv	Abdomen CT without and with contrast, whole-body PET

Radiation protection:

Recommended occupational exposure: 50 msv/yr.

No safe dose of radiation (linear no threshold model).

Greater risk to eyes and gonads.

Reduction in radiation exposure.

- · Limiting time of exposure :
 - · use short bursts.
 - · Last image hold.
- · maximizing distance from radiation source:
 - Exposure diminishes as square of distance from radiation source.
 - Positioning image intensifier close to patient reduces scatter radiation.

Shielding:

- · Radiation resistant eye protection, leaded gloves.
- · Collimate to minimum required visual fluoroscopy field.

contrast media:

- 1. Allergic like reactions:
 - · Idiosyncratic, anaphylactoid, not dose dependent.
 - · Differ immunologically from true allergic reactions.
 - Antigen antibody response rarely identified, no true lqE reaction.
 - · mechanism of action: Combination of systemic

effects:

- · Release of vasoactive substances like histamine.
- Activation of physiologic cascades: Complement, Kinin, coagulation, fibrinolytic systems.
- Inhibition of enzymes like cholinesterase leads to prolonged vagal stimulation.
- Patient anxiety and fear of actual procedure.

a. Physiologic reactions:

- · Not allergic like, dose and concentration dependent.
- Physiologic response to contrast medium molecular properties creating chemotoxicity.
- · Effects can be due to hyperosmolality.
- Can also be due to binding of specific contrast molecules to activators.

MILD REACTIONS		
Self-limiting signs or symptoms		
Allergic-Like	Physiologic	
Limited urticaria/pruritus	Limited nausea/emesis	
Limited edema	Transient flushing/warm/chills	
Limited throat irritation	Headache/dizziness/anxiety/altered taste	
Nasal congestion	Mild hypertension	
Sneezing, eye irritation, rhinorrhea	Vasovagal but resolves spontaneousl	
MODERATE REACTIONS		
Commonly require medical manageme	nt and may become severe if not treated	
Allergic-Like	Physiologic	
Diffuse urticaria/pruritus	Protracted nausea/emesis	
Diffuse erythema	Hypertension	
Facial edema	Chest pain	
Throat tightness	Vasovagal responds to treatment	
Wheezing/bronchospasm mild		

SEVERE REACTIONS	
Life-threatening, may result in morbidity or m occur from allergic-like as well as physiologic	
Allergic-Like	Physiologic
Diffuse edema/facial edema/shortness of breath	Vasovagal reaction resists treatment
Diffuse erythema and hypotension	Arrhythmia
Laryngeal edema with hypoxia	Seizures
Wheezing/bronchospasm with hypoxia	Hypertensive emergency
Anaphylactic shock/hypotension/tachycardia	

Treatment of contrast reactions:

I. mild:

- · Observation, reassurance.
- · Diphenhydramine, chlorpheniramine, diazepam.
- Bronchospasm management.

a. moderate:

- · Incidence: 0.5 to a %.
- Close observation.
- Hydrocortisone, salbutamol, oxygen.

3. Severe:

- Emergency treatment:
 - Rapid administration of epinephrine is the treatment of choice.
 - IV 0.1 ml/kg of 1:10000 dilution (0.01 mg/kg) slowly into running saline infusion, repeated every 5 to 15 min, maximum single dose 1 ml (0.1 mg), total dose 1 mg.
 - Im 0.01 mg/kg of 1:1000 dilution (0.01 ml/kg) to maximum 0.15 mg of 1:1000 if < 30 kg (0.3 mg if weight > 30 kg) in lateral thigh, repeated every 5 to 15 min up to 1 ml (1 mq).
- Vasopressors:
 - most effective vasopressor: Dopamine (a to 10 mcg/kg/min).

Premedication:

- No known strategy to eliminate risk of severe adverse reaction to contrast media.
- Low osmolar contrast media is preferred in patients with known history of allergy.
- AR may happen after extravascular procedures too (RGP).
- · Corticosteroid premedication lowers likelihood of ALR.
- Adverse effect of premedication: Leukocytosis, asymptomatic hyperglycemia, possible infection risk.
- Oral steroids preferable.
- Steroids required at least 6 hrs before contrast media injection.
- Administration within 3 hrs not useful.
- Accelerated IV premedication only used when no alternatives present.

- Prednisone: 50 mg by mouth at 13 hours, 7 hours, and 1 hour before contrast media injection Plus diphenhydramine (Benadryl) 50 mg intravenously, intramuscularly,
- or by mouth 1 hour before contrast medium injection
 2. Methylprednisolone (Medrol): 32 mg by mouth 12 hours and 2 hours
- before contrast media injection

 Plus diphenhydramine (Benadryl): 50 mg intravenously, intramuscularly, or by mouth 1 hour before contrast medium injection

Delayed contrast reactions:

- · Occur from 3 hrs to 7 days after contrast.
- m/c allergic like and cutaneous reactions.
- Typically resolve spontaneously.

Specific contrast considerations:

- Allergic patients (unrelated to contrast) a to 3 times more likely to have contrast reaction.
- Reaction to I class doesn't increase risk of reaction to another type of contrast medium.
- Contrast reactions more common in patients with anxiety.
- Asthma increases chance of ALR (premedication not recommended).
- Beta blockers can lower threshold for contrast reactions (cessation not recommended).
- Premedication not recommended solely on cardiac status.
- Hyperthyroid patients may develop thyrotoxicosis with contrast (rare).
- Washout of 3 to 6 wks recommended after contrast study before radioiodine therapy.
- Premedication not recommended for myasthenia gravis/pheochromocytoma/sickle cell trait.
- Large volume extravasation of contrast:
 - Swelling, edema, erythema, pain, cellulitis, compartment syndrome.
 - maximum symptoms in 24 to 48 hrs.
 - Primary mechanism: Hyperosmolality of contrast.

- Rx: manual massage, plastic surgery consult.
- · Post contrast AKI:
 - Nonspecific term: Acute, sudden deterioration in kidney function within 48 hrs.
 - CIN: Specific for sudden decrease in kidney function by IV administration of iodinated contrast medium.
 - Pathophysiology: vasoconstriction, direct tubular toxicity, osmotic mechanisms, chemotoxic mechanisms.
 - · Diagnosis of CIN: Occurance within 48 hrs:
 - 1. Increase in creatinine of > 0.3 mg/dl.
 - a. Increase in creatinine from baseline > 50%.
 - 3. W/0 < 0.5 ml/kg/hr for at least 6 hrs.
 - GFR at least 45 ml/min/1.73 m^a not independent risk factor for CIN.
 - IV contrast risk factor for CIN with GFR < 30 ml/ min/1.73 m^a.
 - · Incidence: a to 5 %.
 - most important risk factor for CIN is pre-existing severe renal insufficiency.

Other risk factors:

- I. DM.
- a. Dehydration.
- 3. CV disease.
- 4. Diuretic use.
- 5. Advanced age.
- 6. multiple myeloma.
- 7. HTN.
- 8. Hyperuricemia.
- 9. Repeated contrast injections.
- 10. LOW PCV.
- 11. EF < 40%.
- 12. Renal tumor/transplant/single kidney.

13. HOCM, increased contrast viscosity.

14. ESRD with no natural renal function is no longer at risk for CIN.

Prevention:

- · Hydration.
- · Sodium bicarbonate : Doubtful role.
- N acetyl cysteine: Controversial.

Frusemide increases risk for CIN.

metformin use:

- Advised discontinuation 48 hrs prior in patients with renal insufficiency.
- · Fatal in 50 % cases.
- · Rare with normal renal function.
- Discontinuation not required before Gd mR1.

MRI contrast agents

00:16:56

Gadolinium:

- · Paramagnetic metal ion.
- 7 unpaired electrons.
- · Reduces TI and Ta relaxation times.
- Increases tissue signal intensity on TI weighted images.
- Can interfere with assay for Ca (false hypocalcemia for 24 hrs), iron, magnesium, iron binding capacity and zinc.

Adverse effect:

Nephrogenic systemic fibrosis:

- Fibrosing disease of skin, subcutaneous tissue, lungs, esophagus, heart and skeletal muscles.
- Initial features are skin thickening and pruritis.
- Later: Contractures and joint immobility, death due to visceral involvement.

- · Strong association with advanced renal disease.
- Onset: a days to 3 months.
- Patients with GFR < 30 not on chronic dialysis, most difficult patient population, IV contrast is contraindi cated, Gd may cause NSF.
- NSF risk greatest with GFR < 15 (1 to 7 % incidence).
- In high risk patients, use minimal dose, consider macrocyclic agents, avoid gadodiamide.
- mechanism: Gd dissociates from chelates in patients with poor renal clearance free Gd binds phosphate and other anions.
- Forms insoluble precipitate: Deposited in tissues with subsequent fibratic reaction.

IVU:

- Clear liquids 12 to 24 hr and enema 2 hr before procedure.
- · Scout film.
- 50 to 100 ml contrast bolus.
- Nephrogenic phase immediately after injection.
- Next film at 5 minutes and every 5 minutes.
- · Abdominal compression: Visualization of ureters.
- · upright films possible for renal ptosis.
- · Postvoid films taken.

Plain abdominal radiography:

Supine position.

- AP exposure.
- · Level of diaphragm to inferior pubic ramus.
- Cost effective to monitor residual stone burden after treatment.

Retrograde pyelography:

- Sterilize urine before study.
- · Can determine ureteral normalcy distal to obstruction.
- Dilute contrast medium (50 % or less) to prevent subtle
- · filling defects getting obscured.
- Evacuate air bubbles from syringe before instillation.
- 5 to 8 cc contrast usually required in normal syst.

· Complications:

- Pyelotubular backflow: Opacification of medullary pyramids.
- a. Pyelosinus backflow: Tear in calyceal fornix leading to contrast leak in renal sinus.
- Pyelolymphatic backflow: Opacification of renal lymphatic channels.
- Pyelovenous backflow: Contrast entering venous system.

Loopography:

- Advance catheter just proximal to abdominal wall fascia.
- · Balloon inflated with 5 to 10 ml water.
- · Oblique films useful.
- · Drainage film useful.

Retrograde wrethrography:

- · measures total length of urethral stricture.
- Anatomy of urethra distal to stricture visualised.

Static cystography:

- Visualizes structural integrity of bladder.
- Shape and contour of bladder.
- Supine position.
- Bladder filled under gravity with a00 to 400 ml contrast.
- · Oblique films useful (diverticulae, fistulae).
- Postdrainage film required.
- As sensitive as CT cystography in detecting bladder rupture.

voiding cystography:

- 1. Evaluates posterior wrethra.
- a. vur.
- 3. Supine or semi upright position.
- 4. B/I oblique views useful.

CT

00:31:06

- Attenuation of x ray photons passing through patient.
- Computer based reconstruction of cross sectional images.
- Amount of transmitted radiation measured by detector on opposite side of X ray beam.
- Helical (multidetector CT): Patient moves through continuously rotating gantry.
- · Current CT: 64 to 320 rows of detectors.
- Gray scale of each pixel of CT image depends on amount of radiation absorbed at that point.
- Attenuation value is expressed in HU.
- Air Hu = -1000, bone Hu = +1000, water Hu = 0.

Phases of CECT:

- unenhanced CT: 1st phase.
- Corticomedullary phase: 30 to 70 seconds, defines

- vasculature and perfusion.
- Nephrogenic phase: 90 to 180 seconds, allows sensitive detection and characterization of renal masses.
- excretory phase: 3 to 5 minutes, visualization of PCS and ureter.

mRI:

- · Excellent signal contrast resolution of soft tissue.
- Free proton orient along magnetic Z axis.
- RF antenna or coil placed over area of interest.
- · Coil transmits RF pulses through patient.
- Protons release energy on stopping RF pulse.
- TI weighted images generated by time to return to
- equilibrium in 2 axis, Ta weighted images in XY axis.
- Ta images: Water appears bright.
- · cortex brighter than medulla.

Fat imaging:

- Inversion recovery imaging.
- · Chemical shift imaging (m.c.).
 - · In phase and out of phase images taken.
 - Loss of signal on OP imaging s/o intracytoplasmic fat.
- Fat saturation imaging.
- Spectral presaturation with inversion recovery (SPIR).
- Spectral presaturation attenuated inversion recovery (SPAIR).

multiparametric mRI:

- 1. Ta weighted sequence.
- a. DWI.
- 3. DCE.
- 4. MRS.

ULTRASONOGRAPHY AND NUCLEAR IMAGING

Ultrasonography

00:00:40

Physical principles:

- USG waves produced by applying short bursts of alternating electrical current to series of crystals housed in transducer.
- Alternating expansion and contraction of crystals via piezoelectric effect creates mechanical wave.

- Longitudinal waves produced (graphically sine wave).
- · Reflected component of wave received by transducer.
- Amplitude: maximum excursion in positive or negative direction from baseline (higher amplitude = brighter pixel).
- · Wavelength: Distance between a peaks.
- Cycle: Complete path of wave between a peaks.
- I Hertz: I cycle/sec.
- Average velocity of sound in human tissues: 1540 m/s.

Resolution: Ability to discriminate between a objects close to each other.

1. Axial resolution:

- Ability to identify as separate a objects in direction of travelling wave.
- Dependent on frequency of sound waves.
- Higher frequency: Better axial resolution.

a. Lateral resolution:

- Ability to identify separately objects equidistant from transducer.
- · Function of focused width of USG beam.
- · Characteristic of transducer.
- Location of narrowest beam adjustable by user.
- more focused beam: Better lateral resolution at that location.
- Image quality enhanced by locating narrowest beam width (focus) at depth of object or tissue of interest.

High frequency transducers (7-18 mHz): Less depth, better resolution (more absorption \rightarrow less reflection \rightarrow less depth). Low frequency transducers (3-5 mHz): more depth, less resolution.

mechanisms of attenuation:

1. Reflection:

- Wave strikes an object, surface or boundary (interface) between unlike tissues.
- Affected by impedance of tissues.

a. Scattering:

- Sound waves strike small or irregular object.
- Produce spherical scatter waves.

3. Interference:

- Scatter waves collide in or out of phase.
- Pattern of interference responsible for echo architecture or texture of organs.
- 'Speckling' seen in organs with fine, internal histology (testis).

4. Absorption:

- mechanical energy converted to heat.
- Absorption directly proportional to frequency.
- Higher frequency → rapidly attenuated → limited depth of penetrance.

As frequency goes up, depth of penetration decreases.

Artifacts in Ultrasound:

- 1. Acoustic shadowing:
 - Significant attenuation or reflection of sound waves at tissue interface.
 - · Echo information posterior to interface obscured.
 - 3D objects appear cresenteric, difficult to get accurate measurements.
 - mitigated by changing angle of insonation, frequency of transducer or focal zone of transducer.

- a. Increased through transmission:
 - Less attenuation of waves while passing through an object.
 - Waves passing through object (simple cyst) has more energy.
 - Reflected wave has more energy.
 - Tissue posterior to cyst appears brighter.
 - mitigated by changing angle of insonation or adjusting time gain compensation settings.

3. Edging artifact:

- Waves strike a curved surface or interface at incident angle: Refraction of wave along plane of interface.
- Overcome by changing angle of insonation.

4. Reverberation artifact:

- Large differences in impedance between a adjacent tissues.
- · Strong reflection of incident wave.
- USG wave bounces back and forth b/w reflective interfaces.
- · Eg: gas fluid mixture in small bowel.
- Comet tail artifact: Blackish line beyond the edging artifact.

Modes of USG

00:14:40

1. Grey scale:

- · 6 mode mc employed
- Real time at images in shades of grey.
- Position of pixel determined by duration of round trip of sound wave.

a. uuppier:

- Principle: Frequency shift when sound waves strike a moving object.
- Allows characterization of motion (blood, urine).

3. Color doppler:

- · Evaluates velocity and direction of motion.
- Brighter the color, greater the velocity.

4. Color flow with spectral display:

- Allows interrogation of particular areas within USG field for flow.
- · Displays the flow as continuous wave form.
- Evaluates pattern and velocity of blood flow in intrarenal or penile vasculature.
- Provides information about peripheral vascular resistance in tissues (Resistive index).
- · RI = PSV-EDV/PSV.

5. Power doppler:

- Assigns amplitude of frequency change to color map.
- Does not permit evaluation of velocity or direction of flow.
- Less affected by back scattered waves.
- more sensitive mode for detecting blood flow.
- Less angle dependent than color doppler, 3 to 5 times more sensitive as color doppler for detecting flow.
- useful for evaluating testicular torsion.

6. Harmonic scanning:

- makes use of aberrations related to non linear propagation of sound waves within tissue.
- Has less noise → less artifact and greater resolution.
- Sonoelastography: Ability to evaluate elasticity (compressibility and displacement) of biologic tissues.

8. Real time elastography (RTE):

- External, non quantifiable mechanically produced compression wave travels in tissue (1540 m/s).
- These waves successively compress tissue layers.
- Deformation induced my manually pressing on anatomy with transducer.
- · Qualitative technique, highly user dependent.
- · Cannot measure absolute tissue stiffness.
- Benefits: High spatial resolution, real time and doesn't require modifications to conventional USG hardware.
- 9. Shear wave elastography (SWE): Measurable shear wave, travelling slowly (1-10 m/s); propagated by tangential sliding force between tissue layers.

 Limitations:
 - Shear waves weak, only few mm of propagation.
 - Detection of shear wave propagation requires very rapid acquisition speeds, may limit area of detection.

10.30 scanning:

- Produces composite of images.
- Important on procedural planning and precise volumetric assessments.
- II. multiparametric USG (mpuSG): Combines different modalities of USG.

Attribute	ultrasound	mri
Anatomic resolution	a.3 mm (7.5 mHz).	i mm.
Vascularity	 microbubbles. No problem with renal insufficiency. 	Gadolinium.NSF.
Tissue structure	Elastography: 1. Strain. 2. Shear.	H ₂ O diffusion / ADC.
Chemical characteristics		choline/spectroscopy.
Access for biopsy	Real time.Infinite flexibility.	Fusion techniques.In bore.

Contrast agents in USG:

- · Contain microbubbles.
- · Enhance echogenicity of blood and tissue.
- Targeting ligands attached to microbubble allow it to selectively accumulate in diseased or abnormal tissues.
- Bubbles rapidly degraded by interaction with sound waves.
- · Good safety profile.

Patient safety measures:

- · mechanical effects:
 - Torque and streaming.
 - Cavitation → small gas → filled bubbles form and collapse → liberate large amount of energy → may damage tissue in certain circumstances.
 - most likely to be observed around gas containing structures like lung and bowel.
 - mechanical index (mi): Probability that cavitation may occur.
 - Lung and intestine: m1 < 0.7 safe.
 - Adjacent structures: Limit scanning time if m1 > 0.4.
- Thermal effects:
 - Due to tissue heating by absorption of energy.
 - Influenced by beam focusing, transducer frequency, exposure time, scanning mode and tissue density.
 - Thermal index (TI): Probability that tissue temperature within sonographic field will be increased by I degree celsius.
 - Elevations up to 6 degree celsius safe unless exposure time < 60 seconds.

Clinical Uses of USG

00:27:27

Renal USG:

- 3.5-5 mHz, higher for children.
- Intraop/lap USG: 6-10 MHz.

 LK slightly higher than RK, bowel gas problematic on left, LK lacks liver as acoustic window.

- LP 15 degrees lateral to UP, kidney rotated 30 degrees posterior to coronal plane, LP slightly anterior to UP.
- Normal kidneys: Hypoechoic to liver; infant kidneys hyperechoic.
- Central hyperechoic band: Renal hilar adipose tissue, blood vessels and PCS.
- Renal cortical thickness > 7 mm and renal parenchymal thickness > 15 mm normal.

Transabdominal pelvic USG:

- 3.5 to 5 mHz, higher for children.
- up to 10 minutes observation required to verify absence of ureteral jets.

