HEMODYNAMIC MONITORING-PART 1

Introduction

00:00:16

- ullet Body here Cardiovascular organ dysfunction: $a^{\rm nd}$ most common organ dysfunction.
- · Continuously observing changes in physiologic variables:
 - 1. To monitor organ function.
 - a. For prompt therapeutic interventions.
 - 3. To evaluate response to therapeutic interventions.
- Monitoring per se not improve patient outcomes.
- · Timely applied right interventions can do.

Assessing global and regional perfusion

00:01:19

Initial steps:

- 1. Clinical assessment.
- Basic monitoring and assessment of global perfusion.
- 3. Preload monitoring and fluid responsiveness.

Advanced monitoring measures:

- 1. Cardiac output monitoring.
- a. Assessment of cardiac contractility.
- 3. Assessment of tissue perfusion.

Step 1: Clinical assessment

- Thirst.
- Cold extremities.
- Poor peripheral pulses.
- · Impaired capillary refill.
- Tachypnoea, tachycardia.
- Confusion.
- Altered skin perfusion.
- Oliguria.

Skin mottling:

Important predictor of adverse outcome.

- Score 0 : No mottling.
- Score 1: Small area of mottling, localised to centre of knee.
- Score a: modest mottling area that does not extend beyond superior border of kneecap.

--- Active space -----

- Score 3: mild mottling area that does not extend beyond the mid-thigh.
- Score 4: Severe mottling area, not going beyond the groin fold.
- Score 5: Extremely severe mottling area, extending beyond groin fold.

Step a: Basic monitoring and assessment of global perfusion:

- 12 lead ECG.
- · Blood pressure: Non invasive and Invasive.
- Pulse oximetry (SpO₂).
- Lactate levels.
- Biochemical variables.

Blood pressure monitoring:

manual intermittent	Automated intermittent
Described by KOROTKOW 1905.	Based on oscillometry.
 Sphygmomanometer, cuff, and 	 Cuff is coupled to an oscillometer.
stethoscope.	 The cuff inflates above sustolic
Auscultating sounds generated	pressure.
by turbulent arterial blood flow	 Then gradually deflates.
beyond cuff.	 map: pressure at peak amplitude
Systolic: First Korotkoff sound.	of arterial pulsations.
Diastolic : Before disappearance.	SBP & DBP: Derived from propri-
	etary formulas (rate of change of
	pressure pulsations).

cuff Size:

- Bladder length: 80% of arm circumference.
- Bladder width: 40% of arm circumference.
- Midline of cuff bladder should be positioned over the arterial pulsation.

BP Cuff size

Patient	Recommended cuff size
Adults (by arm circumference)	
22 to 26 cm	12 x 22 cm (small adult)
27 to 34 cm	16 x 30 cm (adult)
35 to 44 cm	16 x 36 cm (large adult)
45 to 52 cm	16 x 42 cm (adult thigh)

Comparison of blood pressure measurements via Korotkoff sounds and oscillometry:

CNAP: Continuous noninvasive arterial pressure

Active space -----

Volume clamp method (finger cuff):

 Inflatable finger cuff with infrared plethysmography & monitor.

 Adjusts its pressure multiple times per second to finger artery constant.

Produce a brachial arterial waveform.

T-line system: Based on applanation to nometry:

· Radial artery applanation:

A pressure sensor applied over radial artery:

· Gently compresses artery: Applanates.

 The sensor is automatically moves over radial artery until optimal waveform is recorded

· mean BP measured directly (optimal waveform).

Oscillometric, volume-clamp, and applanation tonometry technol arterial BP

Invasive blood pressure:

- Gold standard for BP monitoring:
 - Arterial cannulation.
 - Continuous pressure transduction.
 - · waveform display.

- · Conventions:
 - · Pressures expressed as mmHq.
 - Referenced to phlebostatic axis.
 - · Zeroed to ambient pressure.

--- Active space -

Invasive blood pressure: Indications.

- Unstable blood pressure/severe hypotension.
- Use of rapidly acting vasoactive drugs: Vasodilators, vasopressars, inotropes.
- · Frequent sampling of arterial blood

Relative contraindications: Invasive arterial pressure monitoring.

- · Anticipation of thrombolytic therapy.
- · Severe peripheral vascular disease preventing catheter insertion.
- Vascular anomalies: AV fistula, local aneurysm, local haematoma,
 Raynaud's disease.
- Lack of collateral blood flow distally (e.g. radial artery previously used for coronary artery bypass surgery).

modified Allen test:

- Used to assess adequacy of collateral circulation.
- Reduced collateral flow when palm remains pale > 6 to 10 seconds.
- Disadvantage: Sensitivity (70-80%).

- Active space -----

Common sites:

- 1. Radial.
- a. Femoral.
- 3. Dorsalis pedis.
- 4. Posterior tibial.

Complications of Direct Arterial Pressure Monitoring

Distal ischemia, pseudoaneurysm, arteriovenous fistula

Hemorrhage

Arterial embolization

Infection

Peripheral neuropathy

Misinterpretation of data

Misuse of equipment

Pressure Monitoring System:

Pressure monitoring system

Pressured bag of saline Screwable Slow Flush Valve Squeezable Fast Flush Valve Philebostatic axis Midaxillary line, 4th intercostal space Flush filled non-compilare tubing, no more than 1.2 metres

Zeroing & Levelling:

- At level of the right atrium: Levelling.
- Opening the transducer stopcock to atmosphere.
- Stopcock at level of midaxillary line 4th ICS:
 Flavostatic axis.
- with the stopcock open, monitor displays 0.

- · Arterial waveform is a composite of many waveforms of increasing frequencies (harmonics).
- 8-10 harmonics.

Natural frequency:

 Frequency at which a system oscillates.

> maximum diameter minimum length Low Compliance

The Coupling system:

· Fluid between artery and transducer acts as simple harmonic oscillator:

Analogous to a pendulum.

 When the pendulum is displaced, it undergoes simple harmonic motion: it oscillates around the equilibrium point.

The Coupling system

- Resonance: Amplification of a signal
 - When it's frequency is close to natural frequency of a system.

- If natural frequency of pressure transducer matches with each peak of arterial pressure wave:
 - Increase amplitude of the measured values.
- Transducer system must have a natural frequency well above the 8th harmonic frequency of a rapid pulse:

-- Active space ----

Damping:

- · Absorption of energy (amplitude) of oscillations:
 - · Decreases amplitude of waves.
 - · Reduces natural frequency of a system.
- · Transducer system must be adequately damped:
 - Amplitude should not change due to resonance.
- Diameter of the tubing has the greatest effect on damping.
- · Damping increases by third power of any decrease in tubing diameter.

Dynamic response:

· Ability of the system to accurately reproduce hemodynamic waveform.

Natural frequency should be > highest frequency of the incoming pulsatile signal > 24Hz needed

Damping coefficient: How quickly an oscillating fluid filled system comes to rest

Fast flush test

Arterial line setup: Damping adequacy

Arterial line setup: Damping adequacy

Clots, kinks, air bubbles, low compliant tubings, loose connection

Arterial line setup: Damping adequacy

Long tubing,
hyperdynamic
circulation, tachycardia, hypertension, atherosclerosis

Time

Determining fn:

Amplitude Ratio:

Amp Ratio (D2/D1)	Damping coefficient
0.9	0.034
0.8	0.071
0.7	0.113
0.6	0.160
0.5	0.215
0.4	0.280
0.3	0.358
0.2	0.456
0.1	0.591
0.05	0.690