Paediatric Critical Care

Paediatrics Critical Care 1-7850010383

RESPIRATORY DISORDERS

MECHANICAL VENTILATION

Mechanical Ventilation Basics Part I

Mechanical Ventilation Basics Part II

* 4.4 49 Min video

HFNC and NIV in Children

🛊 4.3 77 Min video

RENAL & ELECTROLYTE DISORDERS

🛊 4.5 53 Min video

Management of Dyselectrolytemia in PICU : III

CARDIOVASCULAR DISORDERS

Basics of ECMO: I

Haemodynamics Pathophysiology and Monitoring : I

 $\label{lem:lemodynamics} \textbf{Hemodynamics Pathophysiology and Monitoring: II}$

Shock: Management

Post Operative PICU Care Congenital Heart Disease

NEUROLOGIC DISORDERS

Neurocritical Care

Neurocritical Care: Monitoring of Raised ICP in Children

Neurocritical Care: Management of Raised ICP in Children

INFECTIOUS DISORDERS

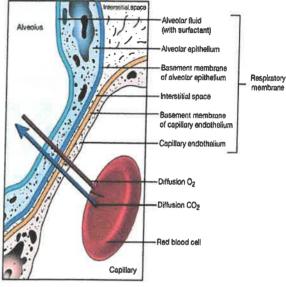
Paediatric Sepsis and Septic Shock

Severe Dengue Management

RESPIRATORY PHYSIOLOGY PART - I

---- Active space -----

Physiology of gas exchange


00:01:15

Alveolar capillary membrane

Diffusion of pulmonary gases:

Alveolar capillary membrane is made up of alveolar epithelium, interstitial space, basement membrane, capillary endothelium and red blood cell.

- Ventilation merely moves gas into and out of the lungs.
- . The process that moves gas across the A-C membrane is passive diffusion.
- · Diffusion is the movement of gas molecules from an area of high concentration to an area of low concentration.

@MARROW

Atmospheric gas:

- 6arometric pressure is the sum of all gases exerting pressure on the earths surface.
- At sea level atmospheric pressure is 760 mmHq.
- The primary components of this pressure is nitrogen, oxygen, argon and carbon dioxide.

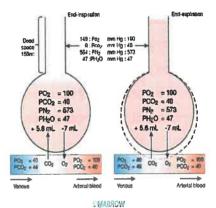
Components of atmosphere:

composition of dry air:

Substance.	% by volume.
Nitrogen (N)	78.08
Oxygen (O _{a)}	20.95
Argon (Ar)	0.93
carbondioxide (co)	0.033
Neon (Ne)	0.0018
Helium (He)	0.0005a
methane (CH,)	0.0002
Krypton (Kr)	0.00011
Nitrogen oxide (NaO)	0.00005
Hydrogen (Ha.)	0.00005

Partial pressure:

- The pressure exerted by an individual gas in a mixture of gases.
- Designated by PGAS.
- To determine the partial pressure of any gas, multiply the percentage of that gas by the total pressure.


example: Oxygen occupies al% of the atmosphere. If the total pressure of the atmosphere (i.e. barometric Pressure) is 760 mmHg, the PO2 of the atmosphere is 159.6 mmHg (760 \times .21).

Partial pressure of key gases:

Oxygen partial pressure is reduced as it goes from the atmosphere to the alveoli secondary to "competition" with carbon dioxide and water vapor.

Partial pressure of Oa and COa:

- The partial pressure of Oa is significantly lower in the alveoli than in the atmosphere.
- If you imagine the alveoli as a micro-environment the CO2 level and water vapor content are much higher.
- By the time the atmospheric gas reaches the alveoli they are diluted by CO2 and H2O.

Partial pressure of key gases.

Water vapour pressure:

- When water vapor is present in a volume of gas it exerts its own partial pressure in accordance with Daltons Law.
- Alveolar gas is 100% humidified at body temp.
- It is assumed to have an absolute humidity of 44mg/l and a partial pressure of (PHAO) of 47 mmHq.

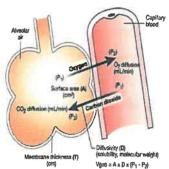
Temperature.	Absolute (maximum) Humidity	water vapour pressure
37°C.	44.0 mg/L.	47.0 mmHg.
35°C.	39.6 mg/L.	4a.a mmHg.
30°C.	30.4 mg/L.	31.8 mmHg.
a7°C	as.8 mg/L.	ala.7 mmHg.
as°c.	a3.0 mg/L.	a3.8 mmHg.
ao°c.	17.3 mg/L.	17.5 mmHg.

Alveolar gas equation:

 Thus, alveolar oxygen (PAOa) is calculated using the "ideal alveolar gas equation" or "the alveolar gas equation".

PAOa=[PB-PHaO]FIOa-Pacoa/R

This equation computes the total PlO2 available for oxygen transfer.


Factors affecting gas exchange

80:80:00

These factors affect the gas exchange at the alveolo capillary level.

Fick's law:

- Adolph Fick (1831 1879).
- The law states that the rate of gas transfer across a sheet of tissue is directly proportional to
 - i. Surface area of the tissue.
 - ii. Diffusion constant.
 - iii. Difference in partial pressure of the gas between the two sides of the tissue.
 - iv. Inversely proportional to the thickness of the tissue.

Diffusion of gas across alveolar capillary membrane.

- V = [A * D * (PI-Pa)] / T.
- Gas moves from alveoli to capillary because of a pressure gradient.

Henry's law:

The amount of gas that can be dissolved by I ml of a given liquid at standard pressure (760 mm Hq) and at a specified temperature is called the solubility coefficient.

- The solubility coefficient varies inversely with temperature.
- For oxygen at 37° C the coefficient is 0.0244 ml/mm Hg/mL H20.
- For carbon dioxide it is 0.592 ml/mm Hq/mL H20.
- In a liquid medium (like the blood and interstitial space), carbon dioxide is a4 times more soluble.

Henry's law states that the amount of a gas that dissolves in a liquid at a given temperature is proportional to the partial pressure of the gas.

4

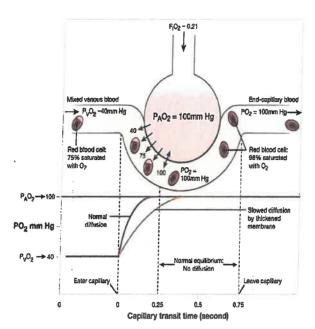
---- Active space ----

Partial pressure = Concentration of dissolved gas

Solubility coefficient

eas.	Solubility coefficient
Oxygen.	0.024
Carbon dioxide.	0.57.
Carbon monoxide.	0.018
Nitrogen.	0.012
Helium.	800.0

Graham's law:


- · Graham's law states that the rate of diffusion of a gas through a liquid is:
 - i. Directly proportional to the solubility coefficient of the gas.
 - ii. Inversely proportional to the square root of the gram-molecular weight of the gas.
- The diffusion rate of CO2 is 20 times greater than that of O2.

Summary:

- The greater the solubility of the gas, the greater the number of molecules available to diffuse for any given partial pressure difference.
- The greater the cross-sectional area of the diffusion pathway, the greater the total number of molecules that diffuse.
- Conversely, the greater the distance the molecules must diffuse, the longer it will take the molecules to diffuse the entire distance.
- Finally, the greater the velocity of kinetic movement of the molecules, which
 is inversely proportional to the square root of the molecular weight, the
 greater the rate of diffusion of the gas.

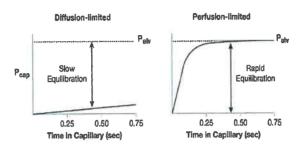
Time interval of diffusion:

- Diffusion of oxygen and carbon dioxide occurs because of a pressure gradient.
- The diffusion of 0a and COa will continue until equilibrium is reached between the two gases; this is usually accomplished in about .25 second out of .75 sec total.
- Under normal resting conditions, the total transit time for blood to move through the A/C system is about 0.75 second.

Perfusion limited gas transport.

exercise and diffusion:

- During exercise, the transit time can be reduced to as low as .40 seconds.
 Increased cardiac output, decreased transit time (less time spent in the capillary in front of a alveolus).
- Since only 0.25 seconds required for complete diffusion normal patient can maintain oxygenation during exercise.

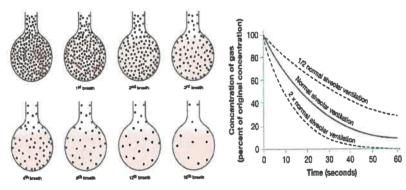

Diffusion during exercise:

- In the presence of certain pulmonary diseases, the time required to achieve oxygen equilibrium in the A-C system may not be adequate.
- Such diseases include alveolar fibrosis, alveolar consolidation, and pulmonary edema.

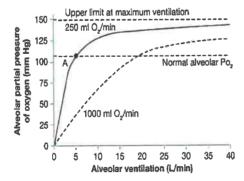
Clinical application of Fick's law:

- A decreased alveolar surface area (ie. Atelectasis) decreases the ability of Oa to enter the pulmonary capillary blood.
- A decreased alveolar 02 pressure (ie. High altitudes) reduces the diffusion of 02 into the pulmonary capillary blood.
- An increased alveolar tissue thickness (ie. Pulmonary fibrosis, pulmonary edema) reduces the movement of O2 across the A-C system.

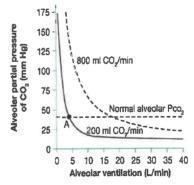
Diffusion of gases



Alveolar ventilation and gas diffusion:


Concentration of oxygen in the alveoli is more during initial ventilation.

As the ventilation increases the oxygen in the alveoli gets diluted.


When the demand of oxygen increases in case of hypoxia, burns the respiratory rate increases to maintain the oxygen levels inside the alveoli.

Alveolar ventilation.

Alveolar ventilation according to demand of oxygen,

Alveolar ventilation in increased CO₂ levels.

In case of increased carbondioxide levels the alveolar ventilation increases to maintain the required oxygen levels.

---- Active space ----

Perfusion of gas

00:28:48

Effect of perfusion on alveolar gas transfer across A - C membrane:

ventilation is zero:

This is called shunt.

V/Q = 0.

Ventilation is zero while perfusion is present. Partial pressures will mimic that of venous gas because the venous capillaries by-passes and directly ends in arterial end. There is no gas exchange.

Arterial partial pressure is similar to gases in venous end.

ventilation perfusion ratio.

Normal lung: Ventilation and perfusion is present. There is $po_a poo_a$. Gas exchange takes place.

Takes place in normal lung.

Ventilation is present but no perfusion: Ventilation is positive but perfusion is zero.

V/Q is infinity.

venous end is not communicating with alveoli, so the alveoli is having arterial oxygenation.

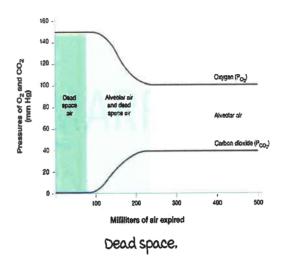
Arterial oxygen concentration is equivalent to P149.

There is no carbondioxide transfer.

This is called dead space.

Concept of dead space:

Two types:

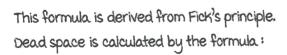

Anatomical dead space: Does not take part in gas exchange.

Physiological dead space: Gas in the alveoli that does not have perfusion contributes to physiological dead space.

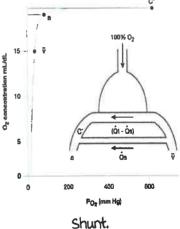
01

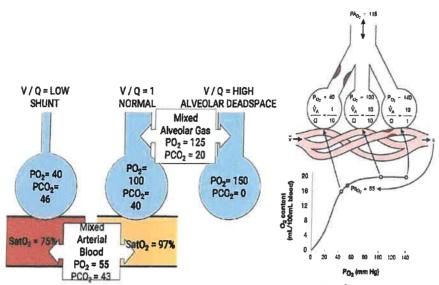
Initial breath will have gas present in anatomical dead space and the breath between 100 to 200 milliseconds will have gas combined with alveolar air and dead space air.

"THE TEACHING a plateau it will have air from alveolar ventilation.


Shunt:

 Some part of pulmonary Capillary blood is not oxygenated and a part of cardiac output goes to bronchial vessels.


· Some of the alveoli are not ventilated


- ↑ in Physiological shunt → Deoxygenated blood leaving the lungs is ↑ (Base of lung).
- ↑ in Physiological dead space → Wasted ventilation proportion is ↑ (Apex of lung).

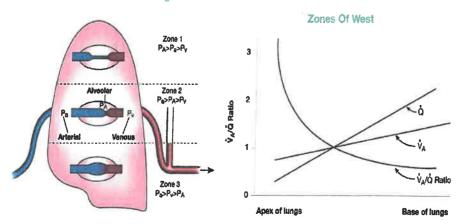
$$\frac{Q_{ps}}{Q_{T}} = \frac{Ci_{0a} - Ca_{0a}}{Ci_{0a} - CV_{0a}}$$

$$\frac{V_{\text{pphys}}}{V_{\text{T}}} = \frac{\rho a_{\text{coa}} - \rho \epsilon_{\text{coa}}}{\rho a_{\text{coa}}}$$

Three compartment model of V/Q.

more shunt \rightarrow more hypoxia (100). more dead space \rightarrow more carbondioxide retention.

Inspite 100% oxygenation if there is no increase in saturation it indicates that tehre is increased shunting. It is also seen in severe diffusion restriction.


Zones of west:

Zone 1: Apex of the lung $(P_a>P_a>P_c) \rightarrow$ increased dead space.

Zone II: $P_a > P_a > P_v \rightarrow Normal oxygenation.$

Zone III: Pa> Py>Pa.

West zones of the lung

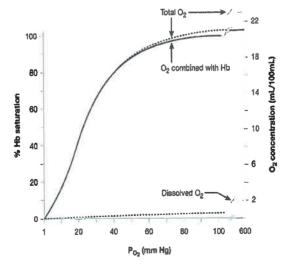
West zone of lung.

10

Fourth zone:

- In this zone the interstitial pressure is higher than the alveolar and pulmonary arterial pressures.
- · Eq: Pulmonary edema, Interstitial pneumonia.
- Interstitial pressure is determined by the oncotic pressure.
 Pinterstitial >Ppa>Ppv>Palv.

Oxugen transport:


- Linear relation of dissolved 0a in blood with PaOa.
- ↑ PaOa → ↑ in Oa content.
- Oa content 1 0.003 ml/100ml blood for Imm 1 in PaOa.
- At al% Oa, dissolved Oa content is a%, at 100 %----10%.
- · Hb binding of Oa is Non-Linear.
- Binding to Hb increases at low Poa...levels at PaOa>40mm hg......flattens at Paoa>100mmhq.
- Oa binds reversibly to Hb.
- Each Hb molecule binds to 4 0a molecule, carrying 1.34 ml 0a/gm Hb.
- · Total CaOa = CaHb + Ca dissolved in blood

Blood oxygen equilibrium curve

00:54:10

The curve is sigmoid in shape. P50 is the P0a at 50% saturation.

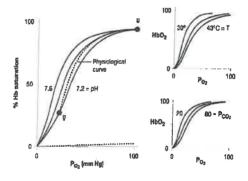
The PSO quantifies the affinity of Hb for Oa

Oxygen hemoglobin dissociation curve.

Shift to left:

(† 0a affinity to Hb)

- 1 in Fetal Hb.
- · Alkalotic Ph > 7.45; Soda bicarb infusion.
- 1 in body temp.; heart surgery.
- I in a-3 DPG (PT and RDS).
- In Pcoa; hyperventilation.
- Same level of Spoa can be obtained at lower Paoa.


Shift to right:

(1 0a affinity to Hb)

- · J. Fetal Hb; transfusion of adult bld.
- Acidic pH <7.35.
- 1 in body temp.; Fever.
- † in a-3 DPG; high altitude, after birth.
- 1 in Pcoa; coa retention (Bohr effect).
- · Higher level of Paoa needed to achieve a particular Spoa level.

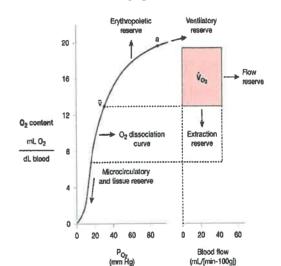
Bohr effect:

- In pH/1 in pCoa/both, shifts curve to Rt, in adult 9 fetus both.
- -∆ log P50/- ∆ pH = 80hr effect,
 -0.48 in adult, -0.44 in newborn.
- Larger at a varying Pcoa than, at fixed Pcoa with varying met acidosis
- (-0.48 vs -0.44).
- Acute change in pH by O.J., Changes
 P50 by 3mm hg.

Bohr effect.

• Effect is most pronounced in 2-3 DPG depleted blood and as Spoa ...

Haldane's effect:


- Pul Arterial blood has low Oa and high Coa -> Passes through lung capillary, releases Coa -> Llocal pH is raised, Oa binds to Hb at low Paoa -> Conc gradient for Oa diffusion, alveoli to capillary bld is maximized.
- Syst art bld has high Oa and low Coa → enters tissue capillary where Coa is high, pick up Coa → pH and hence Oa affinity lowers → Allows Fib το rejease Oa, without decrease in Paoa.

effect of a,3 DPG on Hb -Oa curve:

- competes at 02 binding site on $\boldsymbol{\beta}$ globin chain.
- most important phosphate in RBC (4.5 micromol/ml).
- · On oxygenation, it is extruded.
- · It altering pH in Erythrocytes, reducing Oa affinity via Bohr effect.
- Level depends on Gest. age, postnatal age, pH, Hb level, oxygenation and RBC enzyme pyruvate & hexokinase.
- effect of a,3 DPG on fetal Hb is 40% of adults, functioning fraction is low (binding constant is low).

Other factors affecting 02-Hb dissociation curve:

- metabolic rate of peripheral tissue activate local regulatory mechanism.
- Arterial blood flow and venous return are modulated.
- Neuro-humoral factors affect cardiac contractility,
- Blood viscosity and volume of blood also determines CO.
- A normal load of 4ml of 0a/ kg body mass increase 15 folds in response to carotid, aortic and brainstem chemo-receptors.

Other factors affecting O2-Hb dissociation curve

Carbondioxide exchange:

	Difference between CO ₂ and O ₂
Partial pressure	PCO ₂ difference btw arterial and venous is much lower, because CO ₂ more soluble in blood
Hypoventilation	$PAO_2 = PIO_2 - (PACO_2/R) + F$ A normal R = 0.8 magnifies PaO_2 changes for a given $PaCO_2$ change.
Membrane diffusion capacity	CO ₂ >O ₂ , because CO ₂ solubility is much greater D=[solubility/MW] _{gas} *[area/thickness] _{memb}
Equilibrium	Similar for both, CO ₂ slower than expected because slow chemical rxns
Shunt and V/Q mismatch	Small for CO ₂ , due to: (a) CO ₂ -blood equilibrium curve is steep (b) ventilatory control will increase overall V° to restore PaCO ₃

Alveolar gas equation

01:07:29

---- Active space ----

PAOA = PIOA - 1.a (Pacoa)

where P10a = F10a (P8 - 47 mm Hq)

except in a temporary unsteady state, alveolar PO2 (PAO2) is always higher than arterial PO2 (PaO2). As a result, whenever PAO2 decreases, PaO2 also decreases. Thus, from the AG equation:

- If F10a and P6 are constant then as PaCOa increases both PAOa and PaOa will decrease (hypercapnia causes hypoxemia).
- If FIO2 decreases and P8 and PaCO2 are constant, both PAO2 and PaO2 will decrease (suffocation causes hypoxemia).
- If PB decreases (e.g., with altitude), and PaCOa and FIOa are constant, both
 PAOa and PaOa will decrease (mountain climbing leads to hypoxemia).

P(A-a)0a:

- P(A-a)Oa is the alveolar-arterial difference in partial pressure of oxygen.
 It results from gravity-related blood flow changes within the lungs (normal ventilation-perfusion imbalance).
- PAOA -> Calculated based on FIOA, PaCOA, and barometric pressure.
- PaOa \rightarrow measured on an arterial blood sample in a blood gas machine.
- Normal P(A-a)Oa ranges from at 5 to a5 mm Hg breathing room air.
- A higher than normal P(A-a)O2 means the lungs are not transferring oxygen properly from alveoli into the pulmonary capillaries.
- Except for right to left cardiac shunts, an elevated P(A-a)Oa signifies some sort of problem within the lungs.

Physiological causes of low PaDa:

Non respiratory.	P(A-a)0a.
Cardiac right to left shunt.	1
Decreased P10a.	Normal.
Low mixed venous oxygen content.	1
Respiratory.	P(A-A)Oa
Pulmonary right to left shunt.	1
Ventilation perfusion imbalance.	1
Diffusion barrier.	1
Hypoventilation (Increased Pacoa).	Normal.

RESPIRATORY PHYSIOLOGY PART II

---- Active space ----

Introduction

00:00:21

Chest wall mechanics:

muscles involved:

- · Diaphragm.
- · External intercostal.

Inspiration mechanics:

- · Diaphragm goes down.
- · Chest wall moves (Outward & upward).
- Increase in AP & transverse diameter.
 - · Outward movement: Pump Handle.
 - · upward movement: Bucket handle.

Respiratory regulation

00:02:23

Respiratory centers:

1. medullary center:

Dorsal respiratory group:

- · Responsible for inspiration.
- Input: Peripheral chemoreceptors \(\gamma\) mechanoreceptors (Via the vagus \(\gamma\)
 alossopharyngeal nerve).
- · Output: Phrenic nerve.

ventral respiratory group:

Responsible for expiration.

a. Pontine center:

Apneustic center:

- Role: Controls the intensity of breathing.
- mechanism: Promotes deep gasping inspiration by \oplus of the dorsal respiratory group and \ominus of the pneumotaxic center.

Pneumotaxic center:

- · Role: Smooth transition from INS to EXP.
- mechanism: Vagus → ⊕ Pneumotaxic center → ⊖ DRG.

Receptors:

- · Central chemoreceptors in the medulia oblongata.
- Peripheral chemoreceptors in aorta & carotids (Carotid body) via CNIX & CNX.
- Mechanoreceptors in the airways ? respiratory muscles.

Peripheral chemoreceptors:

- Peripheral chemoreceptors present in aorta 9 carotids (carotid body).
- · Cell type: Type II glomus cells.
- Type II glomus cells when POa normal: Constant K efflux.
- Type II glomus cells when PO2 low: \downarrow K efflux \rightarrow 1L-Type Calcium influx \rightarrow Dopamine NT \rightarrow \oplus CN IX \uparrow CN X.

rentral chemoreceptors coa:

Blood.	CO + H O = H CO = HCO3" + H*	
666.	VA.	
CSF.	CO + H O = H CO = HCO3 + H+	

Sensitivity of peripheral chemoreceptors to oxygen:

Location: Carotid body and aortic body.

Function: measure PaO2 (< 60 mm Hg), CO2 and pH.

mechanisms of action:

 \uparrow COa, \downarrow Oa, and \downarrow pH \rightarrow \uparrow sympathetic innervation. Modulate breathing via the respiratory center in the medula.

Regulation:

Deep inspiration:

DRG \rightarrow \oplus Inspiratory group of neurons in VRG (VRG has both INS § EXP group of neurons which are \rightleftharpoons) = Deep inspiration.

expiration:

Once inspiration is maximum \rightarrow Stretch receptors \rightarrow CN IX $\stackrel{?}{\sim}$ CN X \rightarrow ORG \rightarrow \oplus Stimulation of expiratory group of neurons from VRG = Expiration.

Inspiration stimulus:

- Prebotzinger complex § cortex.
- · Prebotzinger complex: Involuntary respiratory control.
- · Cortex: Voluntary respiratory control.
- ullet Prebotzinger: Rhythmic firing of neurons ullet Inspiratory center in DRG.

Reflex:

- · cough reflex.
- Sneeze reflex
- J receptors:
 - · Sense pulmonary edema.
 - Cause shallow breathing.

Injury:

At the level of cortex:

- · Cortical control of breathing lost.
- Regular pattern of breathing present (Due to Prebotzinger complex).
- · Vagus intact: Regular respiration.
- · Vagus not intact : RR & TV decreased

Lesion between pneumotaxic q apneustic center:

- Vagus intact: Regular respiration (Not as smooth as in cortical injury).
- · Vagus not intact: Apneustic breathing.

Lesion at apneustic center:

- · Vagus intact: Irregular respiration.
- vagus not intact: Ataxic breathing (Slow and irregular respiration).

Lesion below medulla: Apnea

Concepts of respiratory control:

- Respiration is controlled via a negative feedback system in (CNS).
- · Central neuronal processing and integration in the brainstem is hierarchical.
- Brainstem neurons have cellular q membrane properties that allow them to beat (cycle) spontaneously. These properties play a role in generating rhythmic respiratory neuronal behavior.
- Respiratory rhythm generation in central neurons is most likely a result of integration between network, synaptic, cellular & molecular characteristics.
- Afferent information is not essential for generation of breathing, but modulates respiration.