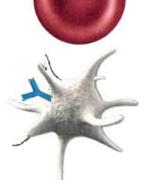
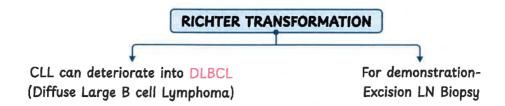


1. CHRONIC LYMPHOCYTIC LEUKEMIA

CHRONIC LYMPHOCYTIC LEUKEMIA

PATHOLOGY


00:01:41


- Tumor of immune competent B cells
- · CLL suspected when -
 - Absolute lymphocyte count >5 X 10°/ ml X 3 months
- If count < threshold, no nodal involvement, no organomegaly and absent cytopenia Monoclonal B cell lymphocytosis
- Monoclonal Gammopathy of Unknown Significance (MGUS) → Smouldering myeloma → Multiple myeloma
 → Plasma cell leukemia

Important Information

- Atypical lymphocytosis seen in EBV (Infectious mononucleosis)
- Proliferation of immune-incompetent B- cells with following features
 - o Attack self RBC and platelets
 - → COOMBS positive haemolytic anaemia
 - → IgG class of antibodies present for all classes of autoimmune haemolytic anaemia except for Cold agglutinin syndrome
 - → Warm antibody mediated damage
 - o Flow cytometry CD5+ B cell
 - o Morphologically mature appearing B- cells
 - → Chronic lymphocytic leukemia (CLL)-monoclonal proliferation of mature B lymphocytes defined by absolute number of malignant cells in blood (5 X 10⁴/ml)
- Cells express ZAP 70 (Zeta associated protein 70) Intracellular tyrosine kinase
- T/t not started for all cases of CLL, depends on health status of an individual
 - o Patient with no co-morbidities → Proceed with chemotherapy
 - Patient with multiple co-morbidities (triple vessel disease, uncontrolled DM) → Person can die with complications of diseases
 - Slow progression of tumor gives window of opportunity to diagnose tumor relatively early

ZAP 70	REQUIREMENT OF CHEMOTHERAPY
+	By 3-4 years
-	By 8-12 years

death in patients

Hypogammaglobulinemia: ↑ incidence of infections → recurrent pneumonia, UTI, Sepsis and leading cause of

ETIOLOGY 00:09:27

- Deletion of chromosome 13q
- Trisomy 12
- Deletion of chromosome 17p (Worst prognosis)
- Overexpression
 - o ZAP-70
 - o BCL-2 inhibits apoptosis
- Genes responsible SF3B1, NOTCH-1
- Chemical Agent orange in Vietnam war

CLINICAL FEATURES 00:11:03

- · Age group geriatric population
- Male to female ratio-7:1
- 50% cases asymptomatic
- · Category B symptoms
 - o Similar to that of TB- evening rise of temperature, weight loss, night sweats

CASE SCENARIO

70-year-old man retired army man presents with early satiety, low grade fever, night sweats and involuntary weight loss for one month. On examination pallor with cervical lymphadenopathy with spleen 6 cm below costal margins is noted. His son tells that last month he had developed herpes zoster lesion on thorax.

WORK UP

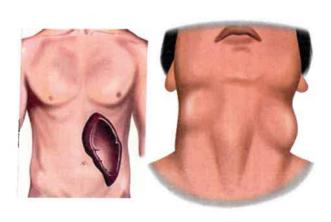
СВС	 Hb↓ TLC↑ Thrombocytopenia
PERIPHERAL SMEAR	 Spherocytes - Autoimmune Hemolytic Anemia Normal RBC have central pallor but spherocytes are small and lacking central pallor Smudge cells
FLOW CYTOMETRY ON PERIPHERAL BLOOD	• IOC
IG LEVELS	• ↓(hypogammaglobulinemia)

IG LEVELS	↓ (hypogammag)	lobulinemia)	
COMPLETE METABOLIC PROFILE	To identify co-mo	orbidities	
LN BIOPSY	Excision biopsy report for suspect	lymph nodes based ted Richter transfol	
CLL CD 19 +	CD 20 (dim) +	CD 23+	CD 5+

CLL	CD 19 +	CD 20	(dim) +	CD	23+	CD 5+
MANTLE CELL LYMPHOMA	CD 19+	CD 20 ((bright) +	CD	5+	Cyclin D1+
FOLLICULAR LYMPHOMA	CD 10+	CD 19++	CD 20+	CD 23+	CD 5-	Cyclin D1-

STAGING

00:18:01


RAI	BINET
Low risk: • Lymphocytosis in blood and marrow	A. <3 lymph node area involvement (Hilar lymphadenopathy, cervical lymphadenopathy, inguinal /axillary group of lymph adenopathy)
Intermediate risk: • Lymphocytosis + cervical lymphadenopathy + hepatosplenomegaly	B. ≥3 lymph node area involved
High risk: • Lymphocytosis + anemia (due to bone marrow involvement)	C. Documentation of presence of anemia - Hb<10 gm/dl, platelet count <1 lac/mm³

NEED FOR THERAPY IN CLL

- Progressive bone marrow failure
- Massive splenomegaly
- Massive lymphadenopathy
- Autoimmune haemolytic anaemia
- Fever >2 weeks

00:20:38

T/t

00:21:15

00:23:20

<65 years of age without comorbidities (diabetes mellitus, hypertension, no CABG)

- Chemotherapy given FCR
 - o Fludarabine
 - o Cyclophosphamide
 - o Rituximab
- Anti apoptotic drug Venetoclax
- Inhibitor of B cell signalling Ibrutinib, Idelalisib

. ↓

>65 years of age with comorbidities

- Chlorambucil
- Obinutuzumab

COMPLICATIONS

- Infection
- Secondary malignancy
 - o 1 risk of skin, prostate cancer
- Autoimmune disorders
 - o Autoimmune haemolytic anaemia
 - o Autoimmune glomerulonephritis
 - o Autoimmune vasculitis

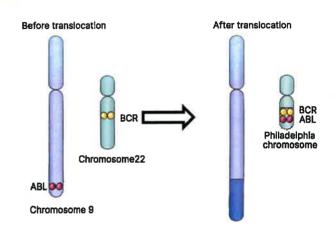
EVAN SYNDROME

• Simultaneous/ sequential appearance of Autoimmune hemolytic anemia and autoimmune thrombocytopenia

T/t

MCQ's

- Q. A 68-year-old patient presents with early satiety, fatigue and enlarged lymph nodes. Physical examination reveals hepatosplenomegaly. Hb is 8 gm%, TLC is 25000 cells/cumm and absolute lymphocyte count of 8,000/mm³. peripheral smear is shown below. Which of the following is best test for confirmation of diagnosis?
 - a. Flow cytometry on peripheral blood
 - b. Bone marrow biopsy
 - c. FISH
 - d. Direct coombs test


Ans. (a)

2. CHRONIC MYELOID LEUKEMIA

CHRONIC MYELOID LEUKEMIA

- Occurs due to t (9:22) (q34.1, q11.2) → long arm of 9 and long arm of 22
- Example of balanced translocation (no loss of genetic material)

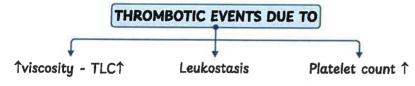
PATHOGENESIS 00:01:50

- Chromosomal swap results in formation of bcr-abl 1 hybrid oncogene
- This produce following novel oncoproteins

P210bcr-abif	M/c fusion protein and levels correlate with diseases activity
P190bcr-abit	Seen in Philadelphia chromosome + ALL
P230bcr-abit	Indolent course

(bcr- breakpoint cluster region, abl- Abelson leukemia)

MANIFESTATIONS CAUSED BY NOVEL PROTEINS


- Inhibition of Apoptosis
- Tyrosine kinase provides unlimited energy to myeloid series and megakaryocyte populations
- Clonal expansion of entire myeloid series (Basophilia)
 - o Myeloid series responsible for production of Neutrophils, Basophils and Eosinophils
 - o TLC ↑ in Chronic myeloid leukemia → sluggish circulation → risk of Leukostasis
- Neutrophils can survive beyond expiry date, NAP score is low → implies lack of ability to handle infections
- Megakaryoblastic proliferation causes rise of platelet count initially due to stimulated tyrosine kinase activity → platelet count ↑→ risk of thrombotic events
- Progression: Chronic → Accelerated phase → Blast crisis

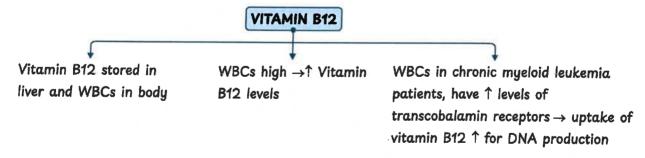
PROGNOSIS OF CML

- Before advent of tyrosine kinase inhibitors, 10-year survival rate: 30%
- After advent of tyrosine kinase inhibitors, 10-year survival rate: >85%
- Allogenic stem cell transplantation used now for blast crisis and accelerated phase

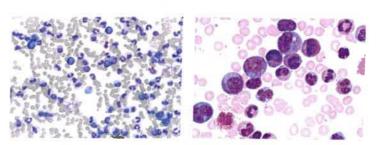
CLINICAL FEATURES

- Age group involved: 55-65 years
- Involuntary weight loss, fatigue & sweating due to Hypercatabolic state
- · Pruritus & flushing: Basophilia
- · Early satiety & constipation
- On P/A examination: Marked / massive splenomegaly
- Pallor: no multiplication of normoblast → production of RBC
- Initial presentation of diseases: Anaemia with organomegaly
- · Enlarged lymph node

- Due to sluggish circulation Priapism (involuntary painful erection), blindness, respiratory distress, \$\prec\$ sensorium, DVT
- Platelet count † initially/ decreased (petechiae) when clonal expansion of entire myeloid series will colonise bone marrow
- Recurrent infections → (Neutrophil Alkaline Phosphate) NAP score ↓

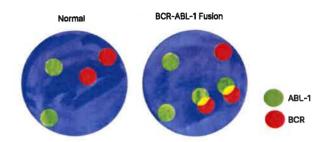

00:09:02

00:13:56


WORK UP

• Haemoglobin 1: Normocytic normochromic anaemia

- TLC↑
- DLC: Basophilia (n: 0-1%)
- Peripheral smear: shift to left: promyelocytes 8% myelocytes 20% metamyelocytes 18%, band neutrophils - 15%, basophils - 10% (illustrative report)
- NAP score J
- Vitamin B12↑


- Platelet count 1 initially, in subsequent part of diseases \rightarrow megakaryoblast $\downarrow \rightarrow$ petechiae can occur
- Bone marrow analysis:
 - o Hypercellular bone marrow with Myeloid hyperplasia
 - o Myeloid: Erythroid= 15-20:1 (normal 2-3:1) \rightarrow exponential \uparrow in myeloid series

Myeloid Hyperplasia

- o Reticulin fibrosis
 - → Stain to determine reticulin fibrosis in bone marrow: Snook silver stain
- FISH analysis to quantify Ph+ cells on Peripheral smear/ Bone marrowusing fluorescent probes: IOC

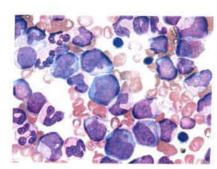
 Quantitative PCR for bcr-abl1: best for determining molecular response (total ↓ in cell count of patient)

ACCELERATED PHASE	BLAST CRISIS
 Peripheral blood smear (PBS) - >15% blasts PBS >30% Blasts + promyelocytes PBS >20% Basophils Platelet count <1 lak/mm³ 	 > 30% blast in peripheral blood or bone marrow Extramedullary blast proliferation Start TKI + chemo and SCT (Stem cell transplantation)

T/t 00:21:21

COMPLETE CYTOGENETIC REMISSION	Absence of Ph+ metaphase cells
MOLECULAR REMISSION	>99.9% of cancer cells have been killed and <0.1% of bcr- abl1 transcripts present Or >3 log reduction
MAJOR MOLECULAR REMISSION	<0.0032 % of bcr-abl1 transcripts present/>4.5 log reduction

- 1st generation tyrosine kinase inhibitors: Imatinib \to 1st generation tyrosine kinase inhibitor, now showing resistance
- 2nd generation tyrosine kinase inhibitors:
 - o Dasatinib, Nilotinib, Bosutinib
- 3rd generation tyrosine kinase Inhibitors used in T3151 (≥ tyrosine kinase inhibitor drug failure present) mutation
 - o Asciminib> Ponatinib
- Another drug (protein synthesis inhibitor used in T3151 mutation): Omacetaxine


ATYPICAL CML/Bcr-abi1 NEGATIVE MYELODYSPLASTIC/MYELOPROLIFERATIVE NEOPLASM

- BCR-ABL-1 negative
- · Chromosome 20 mutation

- Diagnostic clue: Left shift but no basophilia seen
- Median survival of only 2 years (contrast with 10+ years of TKI treated CML)
- T/t: Allogenic SCT (1 relapse)

JUVENILE CHRONIC MYELOMONOCYTIC LEUKEMIA

- <4 year of age
- Left shift plus monocytosis
- Fetal haemoglobin levels \uparrow due to defective proteins that affect hemoglobin switching

MCQ

00:28:25

- Q. A 62-year-old male patient with CML diagnosis is found to have a T3151 mutation in BCR-ABL1. Which of the following drug will be initiated in this patient?
- a. Bosutinib
- b. Tofacitinib
- c. Ponatinib
- d. Nilotinib
- Ans. c

3. ACUTE MYELOID LEUKEMIA

ACUTE MYELOID LEUKEMIA

00:00:37

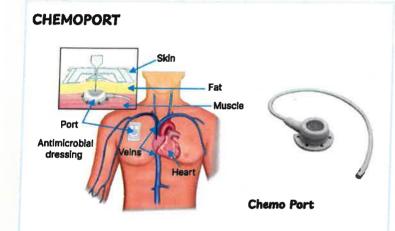
- 5-year survival rate: 25%
- Problems encountered during management:
 - o Leukostasis (M/c in AML > CML): ↑ Viscosity → sluggish circulation causing
 - \rightarrow Respiratory distress d/t lung involvement (M/c organ involved) SPO₂ \downarrow
 - → Drop in Glasgow coma scale
 - → Priapism
 - → Retinal blindness
 - o TRisk of DIC

ETIOLOGY

- Idiopathic
- → Bone marrow failure
 - · Fanconi anemia
 - Diamond Blackfan syndrome: AML → Aplastic anemia
 - Shwachman-Diamond syndrome → Pancreatic exocrine insufficiency
- Defective DNA repair
 - Bloom syndrome and Ataxia telangiectasia
- Down Syndrome (children < 4 years)
 - M, AML d/t GATA1 gene
 - o Acute megakaryoblastic leukemia
- Secondary malignancy

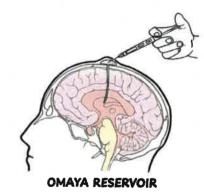
EXPOSURE TO	INCUBATION BEFORE AML	ASSOCIATED WITH
Alkylating agents	4-6 yrs	Monosomy 5, 7
Topoisomerase II inhibitors	1-3 yrs	Chromosome 11

- Radiation exposure
- Benzene
- Drugs like Phenylbutazone and Chloramphenicol
- Chromosomal Translocation
 - M₃ AML: t(15;17) → PML-RARA fusion gene sequence
 - o Differentiation block / maturational arrest at Promyelocytes stage


- o M3 AML → ↑ DIC risk
- t(8;21) → RUNX1-RUNX1T1
 - o Associated with granulocytic sarcoma / chloroma
- Inversion 16 and t(16;16)
- FLT3-ITD activation mutation (M/c genetic mutation in AML)

FAVOURABLE PROGNOSIS

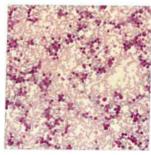
FLT3-ITD	t(8;21)	
EBPA	Inversion of chromosome 16	
NPM1	t(16;16)	


• FLT3-ITD $^{high} \rightarrow Poor Prognosis$

Important Information

• Chemoport helps deliver medications directly into • An Ommaya reservoir used to deliver superior vena cava

OMAYA RESERVOIR



medication directly into CSF

CLINICAL FEATURES

- 65 years with fast progression of symptoms over 3 months
- · Fatigue/Weight loss
- Fever \rightarrow Infections (e.g. Pneumonia)
- TLC ↑↑ > 1 lac/mm³, leukostasis
 - o Organs involved in decreasing order:
 - \rightarrow Lung (M/c)
 - → Brain
 - → Priapism
 - → Blindness

00:13:08

Hyperleukocytosis in Acute Myeloid Leukemia

- Platelets ↓
 - o Petechiae, Epistaxis, Purpura
- · Lymphadenopathy and hepatosplenomegaly
- Gingival involvement seen in M5 AML (Acute monocytic leukemia)

Important Information

Acute Lymphoblastic Leukemia (ALL)

- · Typically affects children
- Presents with
 - o Rapid onset of anemia, bleeding, petechiae
 - o Organomegaly Hepatosplenomegaly, lymphadenopathy
 - o CNS involvement

Acute Myeloid Leukemia (AML)

- More common in older adults (usually >65 years)
- · Presents with
 - o Rapid development of anemia, bleeding, petechiae
 - o Organomegaly Hepatosplenomegaly, lymphadenopathy
 - o Gingival hypertrophy/ U/L proptosis
- · Chloroma/Granulocytic sarcoma
 - o U/L proptosis
 - o Paraplegia (Spinal cord)
- 1DIC: t(15:17)
 - o Ma APML

Important Information

AML Subtypes Key Points

- M₃: APML → t(15:17), ↑ risk of DIC
- M₅: Gingival involvement
- M₇: Down syndrome (< 4 yrs)

DIAGNOSTIC CRITERIA FOR AML

00:18:59

- Bone Marrow Aspiration
 - o Percentage of myeloblasts >20%
 - o If chromosomal abnormalities are present, diagnosis of AML is made even if blast count <20% \rightarrow t(15;17), t(8;21), Inv 16, t(16;16)

Important Information

Bone Marrow biopsy needle

• Salah needle, Klima needle

Jamshidi needle

Bone marrow biopsy needle: Jamshidi needle

WORKUP OF AML

- Lab Findings
 - o Hb ↓, TLC ↓/↑↑, Platelets ↓
- IOC Bone Marrow Aspiration (>20% myeloblast)
 - o Morphology/Cytogenetics/Flow cytometry analysis
 - → Markers CD13, CD117
 - → M7 variety CD41, CD61
- · Molecular Studies
 - o FLT3 (M/c), CEBPA, NPM1
- CXR to identify LN groups
- Echo to detect Ejection fraction of heart
- HLA Typing as part of plan for Allogenic SCT
- KFT and serum uric acid for evaluation for risk of Tumor Lysis Syndrome

Important Information

- Tumor Lysis Syndrome (TLS)
 - o K1, Hyperphosphatemia, Hypocalcemia
 - o Uric Acid ↑→ ATN
 - o T/t I/V Fluids + Rasburicase (DOC)

WHO 2016 CLASSIFICATION OF AML

00:26:34

00:23:01

- AML with Recurrent Genetic Abnormalities
 - o t(8;21)
 - o Inv(16)
- APML with PML-RARA
- AML with MDS-Related Changes
- AML with NOS
- Myeloid Sarcoma
- Myeloproliferative Disorder Associated with Down Syndrome
 - o Transient Abnormal Myelopoiesis

SUBTYPES OF AML WITH NOS

- MO: AML with minimal differentiation.
- M1: AML without maturation
- M2 (M/c): AML with maturation
- M4: Acute myelomonocytic leukemia

- M5: Acute monocytic leukemia
- M6: Pure erythroid leukemia
- M7: Acute megakaryoblastic leukemia (a/w Down's syndrome)
- · Acute basophilic leukemia
- · Panmyelosis with myelofibrosis

T/t OF AML

00:27:53

- Chemotherapy Cytarabine + Anthracyclines
 - o Daunorubicin, Idarubicin
- M3 AML (APML) Specific Therapy
 - o ATRA (All-Trans Retinoic Acid) + ATO (Arsenic Trioxide)
 - o MOA -
 - → ATRA Differentiates neoplastic cells → senescence of leukemia cells
 - → ATO Induces apoptosis
 - o Complication Differentiation syndrome (pulmonary endothelial damage → severe SOB)
 - → Management Supplemental O₂ + steroids
- · Allogenic stem cell transplantation Relapse prevention strategy in AML

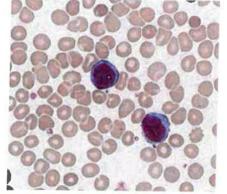
MCQs

- Q. A 67-year-old male presented with clinical features of Acute Myeloid Leukemia. Which of the following organs is most commonly involved in leukostasis?
 - a. Liver
 - b. Heart
 - c. Kidney
 - d. Lung

Ans. (d)

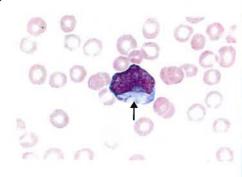
4. ACUTE LYMPHOBLASTIC LEUKEMIA

ACUTE LYMPHOBLASTIC LEUKEMIA

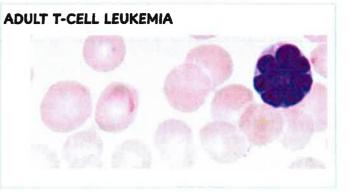

00:00:18

SUBTYPE	PERCENTAGE OF ALL CASES	SPECIFIC FEATURES
B-cell ALL	70%	 M/c subtype seen - Common B cell ALL Marker: CD 10+ T (9:22)
T- cell ALL (HTLV 1 associated)	25%	 Can cross blood testis barrier - testicular involvement Mediastinal involvement (pressure on adjoining tissues like trachea, bronchi, superior vena cava syndrome)
Biphenotypic	5%	 Mixed lineage MLL gene/KMT 2A involvement Now called as-Mixed Phenotypic associated Leukemia (MPAL)

BONE MARROW ASPIRATION DONE AND SLIDES STAINED WITH WRIGHT GIEMSA STAIN


- · Large cell with dark nucleus
- Nuclear cytoplasmic ratio ↑ (↑N:C)
- Scanty cytoplasm, Fine chromatin
- Lymphoblast concentration in bone marrow >20%
 - Acute Lymphoblastic Leukemia

LYMPHOBLAST



- ↑ N:C ratio
- Auer rods/Myeloblast present
- If percentage of cells >20% myeloblast-Acute Myeloid Leukemia

MYELOBLAST

- ↑ N:C
- Indentation in nucleus gives appearance of flower - Flower cells
- Adult T cell Leukemia caused due to association with HTLV-1

ETIOLOGY

00:05:52

- A Ataxia Telangiectasia

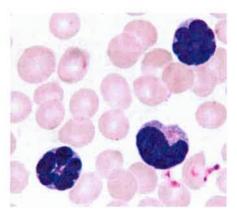
 B Bloom Syndrome (defective DNA repair)

 C Chemotherapy induced secondary malignancy
 Drugs responsible alkylating agents like Cyclophosphamide, Topoisomerase II inhibitor
 Drugs used in T/t of AML, Myelodysplastic Syndrome, Carcinoma breast

 D Down syndrome

 I Ionizing radiation, Infection- HTLV

 F Fanconi anemia


 K Klinefelter syndrome

 N Neurofibromatosis type 1
- Philadelphia chromosome, t(9:22)
- Other causes
 - o $t(8:14) \rightarrow Burkitt's Lymphoma$
 - o t(4:11)
 - o t(1:19)

HTLV-1

00:10:50

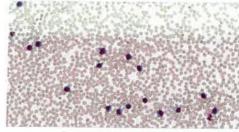
- Adult T cell Leukemia
- · Flower cell or clover leaf

CNS LEUKEMIA

00:11:19

- · ALL > AML
- Raised ICP/Meningismus
- Cell Count >5 cells/mm3
 - \circ Lumbar puncture \to breech of blood vessels \to blood can enter CSF \to cancer cells introduced \to intrathecal methotrexate given after lumbar puncture to minimize chances of accidental inoculation of cancer cells into CSF
- CT Leptomeningeal metastasis
- Intrathecal methotrexate should be given after LP

CLINICAL PRESENTATION


00:13:25

- Age group of presentation 2-8 years, > 50 years
- Progressive Pallor and Anemia
- Bleeding Epistaxis
- Infection Recurrent Pneumonia
- · Petechia, purpura, bleeding
- · Hepatospienomegaly, Lymphadenopathy
- CNS leukemia → ↑ ICP → 6th nerve palsu
- Bony/Sternal Tenderness

WORK UP

00:18:00

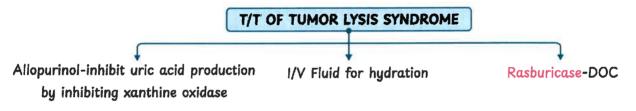
- · CBC and Peripheral smear
 - o Hb↓
 - o TLC Normal/↓/↑↑
 - Leukostasis (AML>ALL) → initially low neutrophil count → recurrent pneumonia
 - o Platelet count ↓
- IOC Bone Marrow Aspiration/Biopsy

Bone marrow smear: ALL

Salah and Klima needles used

Site-Posterior Superior Iliac Spine

Lymphoblasts count >20% with 1 N:C ratio, fine chromatin


TEST DONE ON BONE MARROW SAMPLE

CELL MORPHOLOGY EVALUATED IN SMEARS USING WRIGHT AND GIEMSA STAIN

- L1 (M/c)
- L2
- L3
 - o Burkitt's leukemia and associated with t(8:14)
 - o Mature B cell ALL
 - o CD10 ⊕ with S. Ig ⊕

IMMUNOPHENOTYPING USING FLOW CYTOMETRY	 B cell ALL: CD19 CD22 CD79A CD10 T cell ALL: CD2 CD3 CD7 Biphenotypic variety: combining both B cell ALL and T cell ALL
CYTOGENETICS: FISH (FLUORESCENT IN SITU HYBRIDISATION)	 t (9:22) t (8:14) t (4:11) t (1:19)
CYTOCHEMISTRY (DIFFERENTIATE MYELOBLAST FROM LYMPHOBLAST)	 MPO- negative PAS- Positive Terminal deoxynucleotidyl transferase (TdT)- Positive

- · Serum electrolytes and uric acid to get baseline values due to risk of Tumor Lysis syndrome
 - o Tumor lysis syndrome chemotherapy \rightarrow death of large number of cancer cells \rightarrow ATP breakdown to produce phosphates \rightarrow hyperphosphatemia \rightarrow chelation with cancer \rightarrow calcium \downarrow
 - → Potassium ↑
 - \rightarrow Uric acid $\uparrow \rightarrow$ blockage of kidney tubules by uric acid crystals \rightarrow acute tubular necrosis

- o Lumbar puncture to check CSF for leukemia cells
- o HLA testing as patient subsequently sent for stem cell transplantation

HIGH-RISK ALL FEATURES

00:26:20

- Age group: <1 year and >10 years (extreme age)
- 1 WBC count: >50,000/mm3
- Lymphadenopathy/ Hepatosplenomegaly/ Mediastinal mass (organomegaly)
- · Mature-B Cells
- Hypoploidy
- t(9:22), t(8:14), t(4:11), t(1:19)
- Blasts: >1,000/cumm in peripheral smear after 14 days of chemotherapy
- Absence of CD₁₀ and presence of MLL rearrangement
- T/t Allogenic stem cell transplantation in 1" remission with chemotherapy

LOW RISK ALL

- · Age group: 1-9 years
- WBC count <50,000/mm³
- · Pre-B cell ALL
- Hyperploidy

STANDARD RISK	VERY HIGH RISK
 Same as high risk +normal cytogenetics 	Induction failuret(9:22)