

Created by team PrepLadder based on PHYSIOLOGY lectures on the Prepladder app

Revision friendly Fully Colored Book/Structured Notes

For Best results, watch the video lectures along with reading notes

All rights reserved of these books are reserved under Indian Copyright Act, 1956. No part of this publication may be reproduced stored in a retrieval system or transmitted, In any form or by any means, electrical, chemical, mechanical, optical, photocopying, recording or otherwise, without the prior permission of the copyright owners.

Photocopying the whole book/uploading PDFs or images of the book without the due permission of the copyright owner is punishable under the copyright act as it weighs against the fair use policy because completely copying and distributing the work for free online and physically would hinder the economic viability of creating and maintaining the source.

Any person/ organization found doing photocopy/PDF circulation will face, strict legal actions without any prior notice.

For best result you are advised to study these books/structured notes along with videos on PrepLadder app. For maximum gain, revision of these books/structured notes/books is being done multiple times. At the time of examination, going through- structured Notes is advisable rather than reading any reference book.

 $In \, case \, of \, any \, discrepancy \, between \, book \, and \, videos, \, videos \, on \, Prep Ladder \, app \, should \, be \, considered.$

The copyright of "Physiology Structured Notes" belongs to the team Prepladder and any attempt to reproduce or replicate it in any form will result in a legal action without prior warning.

"The content, information provided herein are as provided and shared by the Author and have been produced on as-is basis. The Company disclaims all rights and liabilities in relation to the accuracy or correctness of the content, images or the information provided. The Author is solely responsible for, including without limitation, any claims, liabilities, damages, losses or suits that may arise with respect to the information provided herein

CONTENTS

P

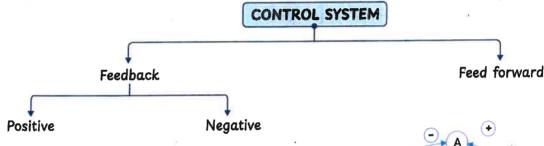
Physiology

S. No. TOPIC			
		GENERAL PHYSIOLOGY	
	1.	Homeostasis	1
	2.	Body Fluid Compartments	6
	3.	Cellular Physiology	14
	4.	Transport across cell membrane	20
		NERVE-MUSCLE PHYSIOLOGY	
	5.	Neuron & Nerve	29
	6.	Resting Membrane Potential	34
	7.	Action Potential in Neuron	40
	8,	Nerve Fibre Classification	49
la la	9.	Functional Anatomy of Skeletal Muscle	56
	10.	Mechanism of Muscle Contraction	63
	11.	Smooth muscle	71
		CVS	
	12.	Conducting system of the Heart	76
	13.	Action potential in Cardiac Muscle	83
	14.	Basics of ECG	89
	15.	Cardiac Cycle	104
	16.	Cardiac Output	115
	17.	Hemodynamic	124
	18.	Blood Pressure & its Regulation	134
		RENAL PHYSIOLOGY	
	19.	Functional Anatomy of Renal System	145
	20.	Glomerular Filtration Rate (GFR)	150

21.	Juxta-Glomerular Apparatus	155
22.	Renal Clearance	159
23.	Tubular Functions	164
24.	Counter Current System	172
	RESPIRATORY SYSTEM	
25.	Functional Anatomy of the Respiratory System	176
26.	Mechanics of Respiration	181
27.	Ventilation-Perfusion of Lungs	187
28.	Compliance	192
29.	Lung Volumes & Capacities	197
30.	Principles of Gas Diffusion	207
31.	Oxygen Transport	212
32.	Carbon Dioxide Transport	217
33.	Regulation of Respiration	220
34.	Hypoxia Hypoxia	228
35.	High Altitude Physiology	233
36.	Deep Sea Diving	238
	GIT	
37.	Gastrointestinal Motility	241
38.	Gastrointestinal Hormones	248
39.	Secretion & Absorption	252
	CNS	
40.	Synaptic Transmission: Pre-synaptic Events	258
41.	Synaptic Transmission: Post-synaptic Events	265
42.	Somatosensory receptors: Tactile	276
43.	Nociceptors	285
44.	Proprioceptors & Reflexes	293
45.	Ascending Tracts of Spinal Cords	300

46.	Descending Tracts of Spinal Cords	307
47.	Basal Ganglia & Cerebellum	315
48.	Special Senses: Visual & Auditory Transduction	323
49.	Special Senses: Smell & Taste	331
50.	Hypothalamus	337
51.	Sleep & EEG	344
52.	Learning and Memory	353
	ENDOCRINE PHYSIOLOGY	
53.	Mechanism of Hormone Action	360
54.	Pituitary Hormones	370
55.	Thyroid Hormones	378
56.	Endocrine Pancreas	386
57.	Hormonal Regulation of Calcium Balance	391
58.	Adrenal Hormones	399
	REPRODUCTIVE PHYSIOLOGY	
59.	Male Reproductive Physiology	406
60.	Female Reproductive Physiology	412

1. HOMEOSTASIS


HOMEOSTASIS

00:00:40

- · Maintenance of near-constant conditions in the internal environment
- The concept of the "milieu intérieur" (internal environment) was introduced by
 - o He stated "the stability of the internal environment (milieu intérieur) is the condition for a free & independent life"
- Homeostasis depends on interstitial fluid (ISF), a component of the extracellular fluid (ECF)
- Term "homeostasis" → coined by Walter B Cannon
 - o Homeostasis → various physiological arrangements which serve to restore the normal state, once it has been disturbed (According to Walter B Cannon)
- Mechanisms maintaining the internal environment → control systems

CONTROL SYSTEM

00:05:47

FEEDBACK CONTROL SYSTEM

- If hormone A → stimulates production of hormone B → in turn stimulates production of hormone C (output)
- Mechanism: The output (C) is giving input / returning back at the level of A or B to provide input

TBP Baro

POSITIVE FEEDBACK CONTROL SYSTEM

• Stimulating / positive feedback

- A stimulates B → B stimulates C → C stimulates A
 - Example of Positive Feedback Control System / Vicious System (cycle)
 - → Childbirth (Ferguson Reflex): Uterine contractions → Oxytocin release → Stronger contractions → More oxytocin → Cycle continues until delivery
 - o Responsible

NEGATIVE FEEDBACK CONTROL SYSTEM

- Inhibitory / negative feedback
- Example: BP ↑ → Baroreceptors activate to lower BP to normal
- Stability of control system → maintained by Negative Feedback control system

GAIN OF CONTROL SYSTEM

- → Measures the
- → Gain = Correction / Error
- Example:
 - · Original / Normal BP: 100 mmHg
 - · Raised BP: 160 mmHg
 - Corrected BP (Baroreceptor mediated): 120 mmHg
 - Error: 120-100 = 20 mmHg
 - Correction: 160-120 = 40 mmHq
 - Gain: (40/20) = -2
 - o BP is raised → baroreceptor corrects it in opposite direction → Gain is negative

Normal gains

- Baroreceptor control system: -2
- Thermoreceptor control system: -33
- INFINITY GAIN CONTROL SYSTEM: Control system achieves 100% correction with zero error → infinite gain
 - Eg: Kidney regulating the BP or Blood volume

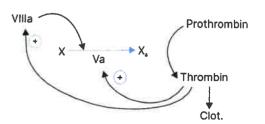
REGULATION FACTOR

00:16:33

- Measures how much a system reduces the deviation from normal
- Regulation factor $(R) = \frac{\text{Change with regulation}}{R}$
- Example:
- Change without regulation
- o Original / Normal BP: 100 mmHg
- o Raised BP: 160 mmHg
- o Corrected BP (Baroreceptor mediated): 120 mmHg
- o Change in BP without regulation / control system: 160 100 = 60 mmHg
- o Change in BP with regulation / control system: 120 100 = 20 mmHg
- Regulation factor (R): (20/60) = 1/3
- · Accuracy of a control system is inversely related to the regulation factor

POSITIVE FEEDBACK CONTROL SYSTEM

00:19:00

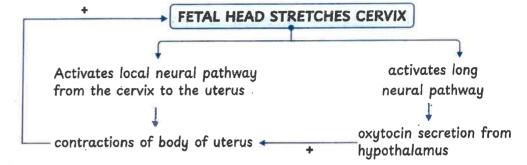

Conditions where positive control feedback systems are beneficial to the body:

EXAMPLES

EXPLANATION

Process occurring during blood clotting

 Thrombin generated → positive feedback to factor Va, VIIIa → activate factor X (to factor Xa) → Converts prothrombin to thrombin → clot formed


LH surge just before ovulation

- On menstrual cycle (normally)
 - o Estrogen exerts a negative feedback effect on LH secretion
- · Just before ovulation
 - \circ Estrogen switches to a positive feedback effect \rightarrow LH surge \rightarrow ovulation

Uterine Contraction During Labor

(Ferguson reflex)

• \uparrow contractions \rightarrow pushing the fetal head further \rightarrow childbirth

Lactation

• Baby suckles near nipple & areolar region of the breast \rightarrow Activates long neural pathway \rightarrow secretion of oxytocin, \rightarrow milk ejection

Generation of Nerve Action Potential

Influx of positively charged sodium ions → depolarization of cell membrane
 → opening of additional voltage-gated sodium channels → further
 depolarization → further opening of channels

Important Information

- Potassium channel opening → negative feedback mechanism
 - o Opening of K* channels \rightarrow efflux of K* \rightarrow Hyperpolarization \rightarrow closure of K* channels

FEEDFORWARD CONTROL SYSTEM

00:29:10

- Anticipatory control system
 - \circ When a control system predicts an impending change \to corrective measures are being taken before the change occurs

EXAMPLES

🗻 1. Thermoregulation System

- Both, feedback and feedforward components are present
- Thermoreceptors present on:
 - o Skin: Peripheral receptor
 - o Hypothalamus (Anterior): Central receptors
- A decrease in ambient temperature leads to a decrease in skin temperature, activating peripheral receptors, which send input to the hypothalamus, triggering the heat production system and increasing core body temperature

2. in Heart Rate & Respiratory rate occurs even before the start of exercise

• Cause: Psychic stimulation of the brain

3. Cephalic Phase of Gastric Secretion

• The sight, smell, or thought of food triggers acid secretion in the stomach as an anticipatory response

4. Receptive Relaxation of Stomach

ullet Food in the mouth that begins to be swallowed o triggers relaxation/dilation of the stomach

→ 5. Cerebellum

Granular cells basket & stellate Purkinje cells (cerebellum) cells (stomach)

- · Purkinje cells have no effect at the level of basket or granular cells
- Unidirectional signal → moving forward
- Controls various movements of the body

Important Information

Adaptive Relaxation of stomach

- ullet Once the food enters the stomach, ullet stomach stretches & dilates ullet accommodates increased volume
- Not feedforward control system

Negative feedback control system - Thermoregulatory system

• $\downarrow\downarrow\downarrow\downarrow$ in ambient temperature $\rightarrow\downarrow\downarrow\downarrow\downarrow$ Core body temperature $\rightarrow\downarrow\downarrow\downarrow\downarrow$ Blood temperature \rightarrow Central receptors activated \rightarrow activate heat production system $\rightarrow\uparrow$ core body temperature

MCQ's

Q. In negative feedback, feedback gain is infinity in which of the following?

(AIIMS 2020)

- a. Temperature control in hypothalamus
- b. Blood volume control by kidney
- c. Blood pressure control by baroreflex
- d. Infinite feedback gain is not possible

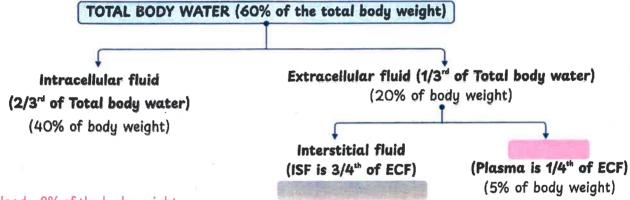
Ans (b)

- Q. A patient's SBP decreased by 10 mm of Hg upon standing and recovered by only 8 mmHg With an error of 2 mmHg, what was the gain?

 (AIIMS 2020)
 - a. 2
 - b. 4
 - c. 8
 - d. 10

Ans (b)

2. BODY FLUID COMPARTMENTS

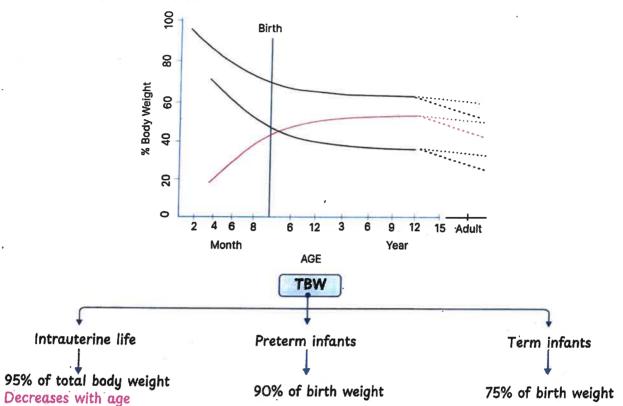

HUMAN BODY COMPOSITION

00:00:56

CHEMICA	CHEMICAL LEVEL		TISSUE LEVEL	
Water		Skeletal muscle	0.5 0.14 (1975)	
Protein		Non-skeletal		
Fat		Adipose tissue	THE TAX THE STATE	
Mineral		Bone	148 150	
Glycogen	Strategistan			

DISTRIBUTION OF BODY FLUID

00:02:19

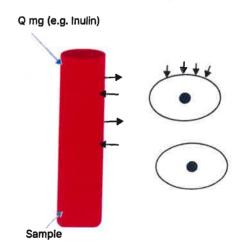

- · Blood 8% of the body weight,
 - o 5% plasma + 3% total cell volume

TRANSCELLULAR FLUID

00:08:00

• Fluid present in certain body cavities

Cerebrospinal fluid (CSF)	150 ml
Intra pleural fluid	10-20 ml
Pericardial fluid	50 ml
Peritoneal fluid	Males: 0 ml Females: 20 ml, (after ovulation)
Synovial fluid	1 ml/large joint



- ICF and ECF
 - o Intrauterine life: initial intracellular fluid (ICF) < extracellular fluid (ECF)
 - o ICF gradually increases due to organogenesis, while ECF decreases
 - o 3-4 months after birth → ICF and ECF become equal, (ratio of 1:1)
 - o By 1 year of age ICF and ECF approach adult levels
 - o At puberty, percentage and distribution of body fluids = adult proportions

MEASUREMENT OF BODY WATER

00:17:56

- To measure the exact amount of body water (TBW)
- Principle Indicator dilution principle or volume of distribution method
- Diagram shows a capillary along with body cells
 - o Water inside the cell: Intracellular fluid (ICF)
 - o Water outside the cell: Interstitial fluid (ISF)
 - o Water inside the capillary: Plasma
 - o Plasma + ISF = Extracellular fluid (ECF)
- To measure body water, a substance like inulin (Q mg) is injected into the capillary,
 - Distributed in plasma → penetrate capillary → enter interstitial fluid
 - o Inulin impermeable to cell membrane

- · Resulting in inulin distributed throughout the entire ECF
 - o Equilibrium reached between the plasma and ISF concentrations,
 - o Inulin concentration is measured in the plasma using a specific formula

Volume of distribution $= \frac{Q}{C}$

- Q- total amount injected;
- C- concentration in plasma
- ullet However, for substances that are easily metabolized, both metabolism and excretion must be considered, ullet requiring a modification of the formula

Volume =
$$\frac{Q-e}{C}$$
 e \rightarrow excreted or, metabolized part of injected substance

- When injected substance is permeable to capillaries → reaches interstitial fluid (ISF)
- Injected substance is also permeable to the cell membrane → reaches intracellular fluid (ICF)
 - o This substance measures total body water (TBW)
- ullet If substance is impermeable to the capillary, ullet only measure Plasma volume

VARIOUS INDICATORS FOR BODY FLUID MEASUREMENT

00:25:30

COMPARTMENT	INDICATOR USED	
Total body water	 D₂O, tritium oxide, Antipyrine (Freely permeable to capillary and cell membranes) 	
ECF volume	• Inulin (Best), Sucrose, ²² Na, ¹²⁵ l-iothalamate, mannitol (Freely permeable to the capillary, impermeable to the cell membrane)	
ICF volume	 ICF volume is typically determined by subtracting the extracellular fluid (ECF) from the total body water (TBW) ICF volume = (TBW - ECF) Requires 2 substances: 1 for TBW & 1 for ECF 	
Plasma	¹²⁵ I-albumin (Best), Evans' blue (Impermeable to capillaries)	
ISF (Interstitial fluid)	ISF =	
RBC	⁵¹ Cr, ⁵⁹ Fe tagged RBC	
Blood Volume	Plasma volume / (1-Hematocrit)	

Component	Plasma (mOsmol/L)	Interstitial Fluid (mOsmol/L)	Intracellular Fluid (mOsmoi/L)
Na*	142	139	14
K.	4.2	4	140
Ca"	1.3	1.2	0
Mg"	0.8	0.7	20
CI.	106	108	4
НСОЗ -	24	28	.10
Phosphate		. 2	11
Protein	7 g/dl	1 g/dl	30 g/dl
Others	-	-	-
Total Osmolality (mOsmol/L)	299	300	301
Corrected Osmolar Activity	282	281	281

- Major ions in ICF: K*, Mg*, Phosphate
- Major ions in ECF: Nat, Cl
- Plasma has slightly more positively charged ions than ISF
 - o Because of more protein, (negatively charged)
 - → Donnan effect
 - o Interstitial fluid has slightly more negatively charged ions than plasma
- Total osmolarity sum of all osmotically active substances = Corrected osmolarity
- · Corrected osmolarity is slightly lower than total osmolarity
 - Due to interactions between positively and negatively charged osmotically active molecules forming complexes
- Osmotic pressure of 1 mOsmol/L impermeable substances = 19.3mmHg
 - o Total osmotic pressure of the plasma = 19.3 x 282 = 5441mmHg (~approx. 5500mmHg)

OSMOLAR GAP

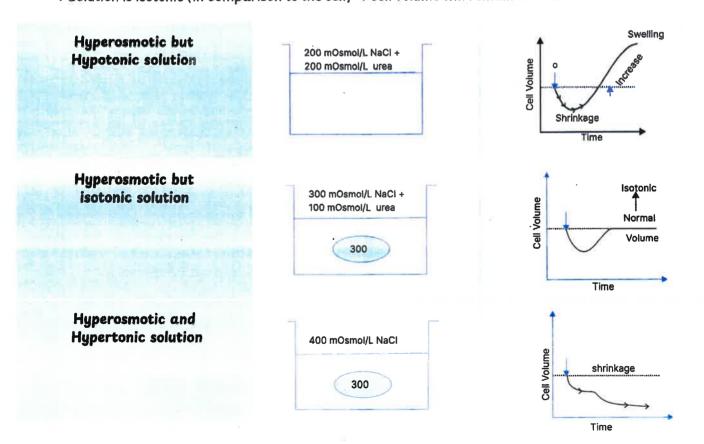
00:37:12

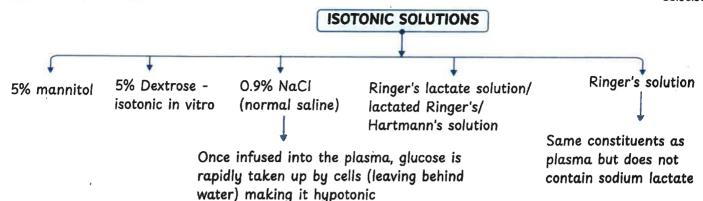
- Total osmolarity measured with Osmometer
 - o Principle: Freezing point depression
- · Calculation of osmolarity

$$BUN = \frac{urea}{2.14}$$
 Osmolarity = 2x [Na' mmol/L] + $\frac{Glucose (mg\%)}{18}$ + $\frac{BUN (mg\%)}{2.8}$

o If all units are given in mmol/L, $\rightarrow 2x [\dot{N}a^{\dagger}] + Glucose + BUN$

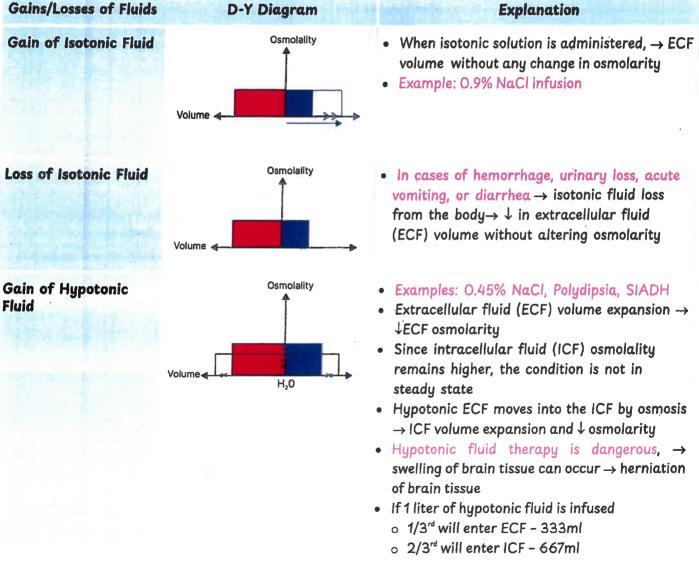
- · Measured osmolality > calculated osmolality
- Osmolar gap=
 - o Normal-10
 - a Increased osmolar gap seen in
 - → Alcohol poisoning
 - → Sorbitol
 - → Huge amount of protein
 - → Hyperlipidaemia

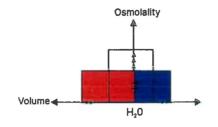

OSMOLARITY AND TONICITY


00:43:00

- Osmolarity → Concentration of osmotically active particles (osmoles) in one liter of solution
- Osmolality → Osmoles per kilogram of water
- Difference between Osmolarity and Osmolality → 1%
- Tonicity of a solution predicts the effect of the solution on cell volume at equilibrium (depends on impermeant solutes)

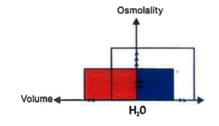
- o Cell osmolarity is 300 mOsm/L, solution is 500 mOsm/L
 - → Solution is hyperosmotic (compared to the cell)
 - \rightarrow However, without knowing the concentration of impermeable solutes, \rightarrow difficult to determine whether the solution is hypertonic / hypotonic / isotonic
- o Solution 200 mOsmol/L NaCl (impermeable) and 300 mOsmol/L urea (permeable)
 - → Solution is hyperosmotic but hypotonic in comparison to cell
 - → Hypotonic solution → increase in cell volume at equilibrium
- o Solution 300 mOsmol/L NaCl (impermeable) and 200 mOsmol/L urea (permeable)
 - → Solution is Isotonic (in comparison to the cell) → cell volume will remain the same



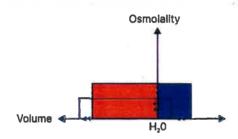

DARROW-YANNET DIAGRAM

00:59:35

- Change in ECF & ICF volume on administration of solutions of different tonicity (infusion)
- At equilibrium, the osmolality of ICF and ECF are equal
 - o 280mOsmol/L



Loss of Hypotonic Fluid


- In conditions like diabetes insipidus or inadequate water intake → excess water is excreted (insufficient ADH)
- Decrease in extracellular fluid (ECF) volume
- Since only water is lost and solutes remain, ECF osmolarity and tonicity, making it hypertonic compared to intracellular fluid (ICF)
- Water moves from ICF to ECF, ↓ ICF volume and ↑ its osmolarity
- Volume of ICF and ECF ↓, and Osmolarity of both compartments ↑

Gain of Hypertonic Fluid

- Infusing 3% NaCl (hypertonic solution)
 expands ECF volume and its osmolarity
- The ECF becomes hypertonic relative to the ICF, causing water to move out of cells, ↓ in ICF volume and increase in ICF osmolarity

Loss of Hypertonic Fluid

- In adrenal insufficiency, solute is lost in excess of water
- Hypertonic fluid loss \$\display ECF volume, making it hypotonic relative to ICF
- Water moves from ECF to ICF, ICF volume slightly
- This results in reduced ECF volume, ICF volume, and ↓ tonicity in both compartments, reaching a new steady state

MCQ's

(JIPMER 2019)

Q. A research fellow was studying the volume and electrolytes in different	t body water compartment.
During his experiment, he took a sample and measured the electrolytes	as Na†: 10 mEq/L and K†: 140
mEq/L. The analysis indicates which of the following compartment:	(NEET 2021)

a. ECF

b. ICF

c. ISF

d. Plasma

Ans (b)

Q. Calculate the blood volume with the followings: Weight of the patient 60kg, Hematocrit 45%

a. 4.8 L

b. 5.0 L

c. 5.45 L

d. 6 L

Ans (c)

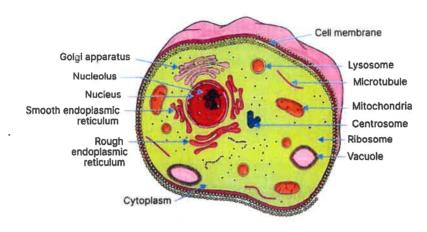
Q. 100mg of sucrose is injected into a 70Kg man. The plasma level of sucrose after mixing is 0.01mg/ml. If 5 mg has been metabolized during this period, then what is the ECF volume? (AIIMS 2020)

a. 9.5L

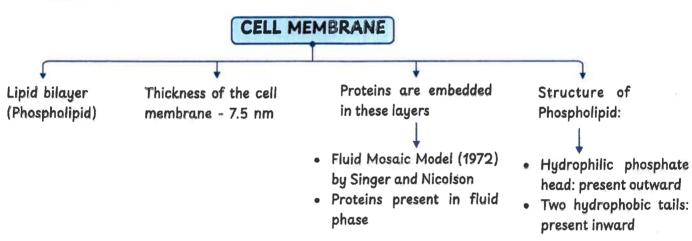
b. 14 L

c. 17.5 L

d. 10 L


Ans (a)

3. CELLULAR PHYSIOLOGY


CELL

00:00:10

CELL MEMBRANE

00:00:51

COMPOSITION OF CELL/ PLASMA MEMBRANE

00:03:58

• Phospholipids (25%)
• Cholesterol (13%)
• Triglyceride (0%)

Protein (55%)

Integral or
• Spanning throughout the cell
membrane

• Attached either to intrinsic
membranes or to the surface of the
cell membrane

Carbohydrates (3%)
• Form of glycoprotein or glycolipid