

.

Structured Notes According to PSM

Revision friendly Fully Colored Book/Structured Notes

For Best results, watch the video lectures along with reading notes

© Dr. Neha Taneja (Author)

All rights reserved of these books are reserved under Indian Copyright Act, 1956. No part of this publication may be reproduced stored in a retrieval system or transmitted, In any form or by any means, electrical, chemical, mechanical, optical, photocopying, recording or otherwise, without the prior permission of the copyright owners.

Photocopying the whole book/uploading PDFs or images of the book without the due permission of the copyright owner is punishable under the copyright act as it weighs against the fair use policy because completely copying and distributing the work for free online and physically would hinder the economic viability of creating and maintaining the source.

Any person/ organization found doing photocopy/PDF circulation will face, strict legal actions without any prior notice.

For best result you are advised to study these books/structured notes along with Dr. Neha Taneja's (Author) videos on PrepLadder app. For maximum gain, revision of these books/structured notes/books is being done multiple times. At the time of examination, going through-structured Notes is advisable rather than reading any reference book.

In case of any discrepancy between book and videos, Authors's videos on PrepLadder app should be considered.

The copyright of "PSM Structured Notes" belongs to the author and any attempt to reproduce or replicate it in any form will result in a legal action without prior warning.

"The content, information provided herein are as provided and shared by the Author and have been produced on as-is basis. The Company disclaims all rights and liabilities in relation to the accuracy or correctness of the content, images or the information provided. The Author is solely responsible for, including without limitation, any claims, liabilities, damages, losses or suits that may arise with respect to the information provided herein

CONTENTS

PSM Vol-1

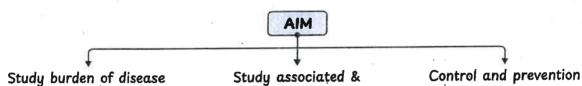
S. No.	TOPIC	
	EPIDEMIOLOGY	1-1-1
1.	Definitions, Components and Tools of Epidemiology	1
2.	Need, Classification, Unit & Approach to Study Designs	6
3.	Descriptive Epidemiology	10
4.	Cohort Study	20
5.	Case Control Study	27
6.	Cross-Sectional, Ecological and Longitudinal Study Designs	32
7.	Errors in Epidemiology/Bias/Confounders and Hills Criteria	36
8.	Experimental Studies, Randomized and Non-Randomized Control-Trials	44
9,	Advanced Epidemiology - Evidence Based Medicine/Systematic Review &	
	Meta Analysis	53
	CONCEPT OF HEALTH AND DISEASE	a,
10.	Concept of Disease	57
11.	Concept of Health and Well Being	64
12.	Disease Control, Elimination and Eradication of Disease	72
13.	Levels of Prevention	76
14.	Health Indicators	84
15.	Monitoring, Evaluation and Surveillance	61
2	VACCINES AND COLD CHAIN	
16.	Vaccines	95
17.	National Immunization & Schedule/Delayed Immunization/Mission	
- 39	Indradhanush	106
18.	Open Vial Policy & VVM Shake Test	114
19.	Cold Chain	119

SCREENING OF DISEASES

20.	Screening	124
21.	Properties of Screening Test	131
·22.	Advanced Concepts of Screening	139
	DEMOGRAPHY AND HEALTH	
23.	Demography	145
24.	Indicators of Demography	149
25.	Fertility Indicators	155
26.	Sources of Health Information	161
	FAMILY PLANNING AND CONTRACEPTIVES	,
27.	Family Planning - Definition & Concept	166
28.	Methods & Classification of Contraceptives & Barrier Methods	170
29.	Intra Uterine Devices	175
30.	Hormonal Contraceptives	182
31.	Physiological and Permanent Methods of Contraception	190
32.	National Family planning Welfare Programme	197
	PREVENTIVE MEDICINE IN OBSTETRICS, PEDIATRICS AND GERIATRICS	
33.	Preventive Obstetrics & Gynaecology	207
34.	Preventive Pediatrics & Child Health Indicators	216
35.	Growth & Develoment/Breast Feeding	226
36.	Preventive Geriatrics	237
	NUTRITION AND HEALTH	
37.	Nutrition, Macronutrients and Sources	239
38.	Micronutrients : Vitamins	249
39.	Micronutrients : Minerals	261
40.	Recommended Dietary Allowance	271
41.	Food Adulteration & Food Fortification	275
42.	Nutrition Health Programmes & Food Logos	279

SOCIAL SCIENCES AND HEALTH

43.	Sociology	288
44.	Family & Socioeconomic Scales	295
45.	Health Economics	302
46.	Social Paediatrics	305
0	ENVIRONMENT AND HEALTH	•
47.	Water : Introduction	310
48.	Water Purification Methods	323
49.	Air & Ventilation	333
50.	Waste Disposal	345
51.	Noise, Light, Housing & Radiation	354
52.	Entomology	360


1. DEFINITIONS, COMPONENTS AND TOOLS OF EPIDEMIOLOGY

EPIDEMIOLOGY

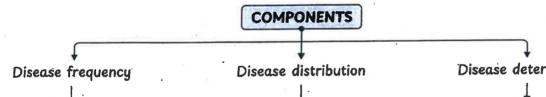
00.00.34

· Study of frequency, distribution and determinants of diseases / health related events & application of this study to control disease / health related events

causative factors

HISTORY

John M Last :


• John Snow: Father of Epidemiology/Father of modern Epidemiology

Fracastoro: Founder of Epidemiology

Father of Public Health: Cholera

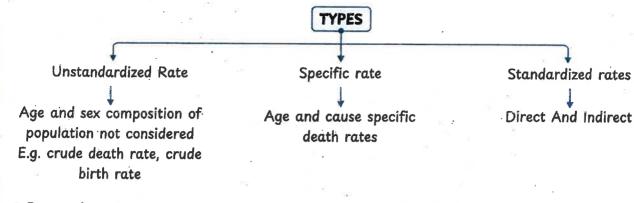
COMPONENTS STUDIED IN EPIDEMIOLOGY

00:05:46

- Incidence, prevalence
- · Measured in terms of rate, ratio and proportion
- How a disease is distributed in terms of time, place and person
- Disease determinants

of disease

- · Why and how disease has occurred
- Analytical study


TOOLS OF MEASUREMENT IN EPIDEMIOLOGY

• Each one of them has numerator/denominator

→ Rate

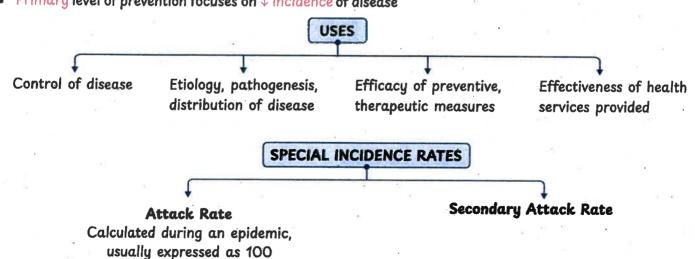
- Measures occurrence of event (disease/death)
- · In defined population, in definite time period
- Numerator is a part of denominator, but the multiplier is 1000, 10000 or 1 lakh
- · E.g. Incidence, Maternal mortality rate

00:08:54

→ Proportion

- Numerator is part of denominator, and multiplier is 100
- E.g. prevalence, case fatality rate (deaths due to disease x / total cases due to disease x 100), secondary attack rate

▶ Ratio


- Numerator is not a part of denominator
- E.g
 - o Sex ratio = No. of females / No. of males × 1000
 - Relative risk (risk ratio) = Incidence of disease in exposed / Incidence of disease in nonexposed × 1000

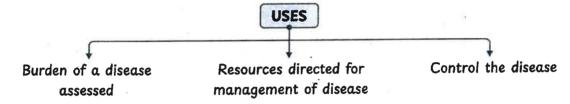
INCIDENCE

- No. of new cases of a disease / new spells / episodes of sickness occurring in a defined population during a specified time period
 Incidence = no. of new cases of a disease occurring in a defined population during a specified time period/population at risk × 1000
- Numerator is a part of denominator; multiplier is 1000 hence rate

HYP

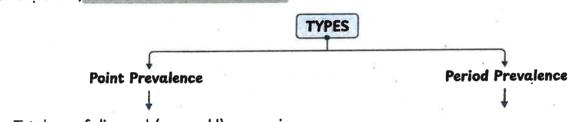
- Measures rate at which new cases of disease occur
- More important for acute illness
- Primary level of prevention focuses on ↓ incidence of disease

PREVALENCE 00:21:34


• Total no. of all individuals who suffer from a disease (new + old i.e. total no. of existing cases of a disease)

Prevalence = total no. of cases of a disease in a community at a point of time /total no. of population in the community at same point of time × 100

Numerator is a part of denominator & multiplier is 100 → proportion


HYP

- Denotes total no. of cases of disease at a point of time (new + old)
- · Assess Burden of disease

MEASUREMENT OF PREVALENCE

- \bullet P=1×D
- I = incidence,

Total no. of diseased (new +old) person in a defined population at one point of time

No. of people in population at same point in time \times 100

 No. of persons with an episode of illness over a defined period /no. of persons in population over same period

• Period prevalence = $\frac{\text{No. of existing cases}}{\text{Total population}}$

DIFFERENCE BETWEEN INCIDENCE AND PREVALENCE

	INCIDENCE	PREVALENCE
Definition	Chance of developing a disease	Chance of already having a disease
Cases	New cases	Total Existing cases
Follow up	Required	Not required
Duration of disease	Independent	Dependent
Suited measure	Cause and effect	Burden of disease
Calculation	Cohort study	Cross sectional study

RELATIONSHIP BETWEEN INCIDENCE AND PREVALENCE

• P=1×D

	INCIDENCE	PREVALENCE
Effective treatment (cures disease)	Same (risk factors are same)	↓ (duration ↓)
New treatment prevents death but does not cure disease e.g. ART	Same	↑ (duration ↑)
New treatment cures disease	Same	↓ (duration ↓)
easily curable / fatal diseases	Same	↓ (duration ↓)
New preventive modality launched e.g. vaccination	(caters to risk factors)	↓ (↓ incidence → ↓ prevalence in due time)

MCQ's

- Q. Incidence of a disease in a population of 30,000 and 300 new cases is:
 - a. 0.1/1000
 - b. 10/1000
 - c. 100/1000
 - d. 1/1000

Ans (b) Incidence = 300/30000 × 1000 = 10/1000

- Q. In a population of 5000 number of new cases of TB is 500; old cases in the same population are 150. What is the prevalence of TB?
 - a. 9%
 - b. 12%
 - c. 13%
 - d. 18%

Ans (c) Prevalence = $500 + 150/5000 \times 100 = 13\%$

- Q. The following is true about prevalence and incidence?
 - a. Both are rates
 - b. Prevalence is a rate but incidence is not
 - c. Incidence is a rate but prevalence is not
 - d. Both are not rates

Ans (c)

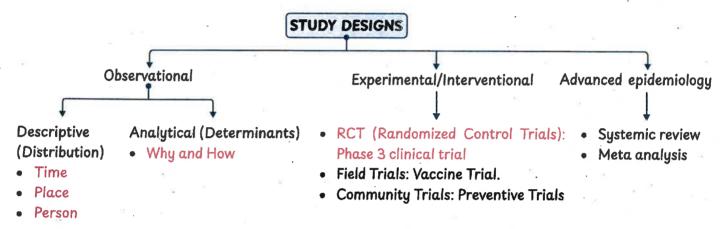
- Q. If the prevalence is very low as compared to the incidence for a disease, it implies?
 - a. Disease is very fatal and/or easily curable
 - b. Disease is non-fatal
 - c. Calculation of prevalence and incidence is wrong
 - d. Nothing can be said as they are independent

Ans (a)

- Q. All the statements are true about disease except?
 - a. Incidence is probability that a healthy individual will develop the disease during specified period
 - b. Incidence will decrease if a new drug is effective in reducing deaths from the disease
 - c. Incidence measures absolute risk of developing disease
 - d. Incidence decreases if a particular prevention program is effective

Ans (b)

2. NEED, CLASSIFICATION, UNIT & APPROACH TO STUDY DESIGNS


NEED OF STUDY DESIGNS

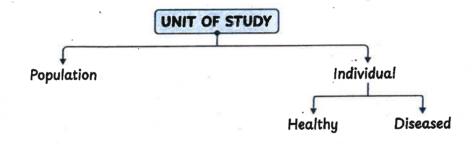
00:00:52

- Study designs are needed to know about the diseases
 - o Frequency: No of cases Incidence & prevalence
 - o Distribution:
 - o Determinants: why, how diseases occurs

CLASSIFICATION OF EPIDEMIOLOGY STUDY DESIGNS

00:02:21

DIFFERENCE BETWEEN DESCRIPTIVE AND ANALYTICAL STUDY


DESCRIPTIVE EPIDEMIOLOGY	ANALYTICAL EPIDEMIOLOGY
No Comparison Group	Comparison group - always present
• E.g., Case Report & Case Series	 E.g., Case-Control study design Cohort study design Cross-Sectional study design Ecological study design

HYPOTHESIS

00:11:45

- Hypothesis an assumption yet to be verified
 - o Formation of hypothesis: Descriptive epidemiology
 - o Testing of hypothesis: Analytical epidemiology
 - o Confirming of hypothesis: Experimental epidemiology
- Descriptive study: Preferred in case of new disease/ Disease of Unknown etiology

TYPES OF STUDIES	SYNONYMS	UNIT OF STUDY
	OBSERVATIONAL STUDIES	
Descriptive studies	Case report, Case series (aggregation of case report)	Individual
Analytical studies		
1. Ecological	Correlation, geographic, aggregate	Populations
2. Cross-sectional	Prevalence	Individuals
3. Case control	Case reference	Individuals
4. Cohort	Follow up/Incidence	Individuals
EXP	ERIMENTAL STUDIES (INTERVENTION STU	DIES)
1. Randomized control trials	Clinical trials	Patients/ sick individuals
2. Field trials	Vaccine trials	Healthy individual
3. Community trial	Community studies	Communities
UNIT OF STUDY		00:17:3

- Unit of study
 - o For all study designs Individuals
 - o Ecological study population

BASIC APPROACH TO IDENTIFY STUDY DESIGNS

00:19:26

- Identify exposure and outcome
- . Start of the disease
- Direction of study
 - o Forward: Cohort study
 - o Backward: Case control study
 - o Same point of time:
- Identify the comparison group
 - o Diseased vs non diseased
 - o Exposed vs non exposed

- Buzz Words: Distribution, Follow up, Matching, previous records, unit of study as population etc
- Rare Diseases (Case control study) or rare exposure (Cohort study)
- Q. British investigators conducted a study to compare measles-mumps-rubella (MMR) vaccine history among 1,294 children with pervasive development disorder (e.g., autism and Asperger's syndrome) and 4,469 children without such disorders. (They found no association.) This is an example of which type of study?

Ans: Case control study

Explanation

• Outcome: Autism

· Exposure: MMR vaccine

• Buzzword: History

• Direction: Backwards

• Comparison group: Diseased vs non diseased

• For a rare disease, always start with the disease

Q. In a study begun in 1965, a group of 3000 adults in Baltimore were asked about alcohol consumption. The occurrence of cancer was studied in the group between 1981 and 1995

Ans: Prospective cohort

Explanation

• Exposure: Alcohol Consumption

Outcome: CancerDirection: Forwards

· Comparison group: Exposed vs non exposed

MCQ's

- Q. Interventional Study is used for:
 - a. Hypothesis formation
 - b. Hypothesis testing
 - c. Hypothesis confirmation
 - d. Hypothesis manipulation

Ans: (c)

- Q. Case series is a type of:
 - a. Descriptive study
 - b. Observational study
 - c. Analytical study
 - d. Interventional study

Ans: (a)

- Q. The difference between Descriptive and Analytical studies:
 - a. Descriptive studies are used to test hypothesis
 - b. Analytical studies are used to formulate a hypothesis
 - c. Descriptive studies are the first phase in epidemiology
 - d. Analytic studies observe distribution of disease
 - e. Descriptive studies answer why and how of a disease

Ans: (c)

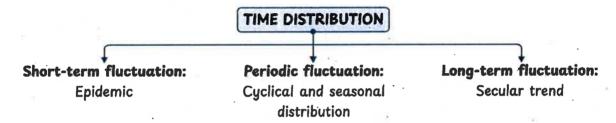
- Q. The analytical study where the population is the unit of study is:
 - a. Cross-sectional
 - b. Ecological
 - c. Case-control
 - d. Cohort

Ans: (b)

- Q. The best study of first choice for assessment of Unknown or New Disease with no etiological hypothesis
 - a. Cohort study
 - b. Case-control
 - c. Cross-sectional
 - d. Descriptive Epidemiology

Ans: (d)

3. DESCRIPTIVE EPIDEMIOLOGY

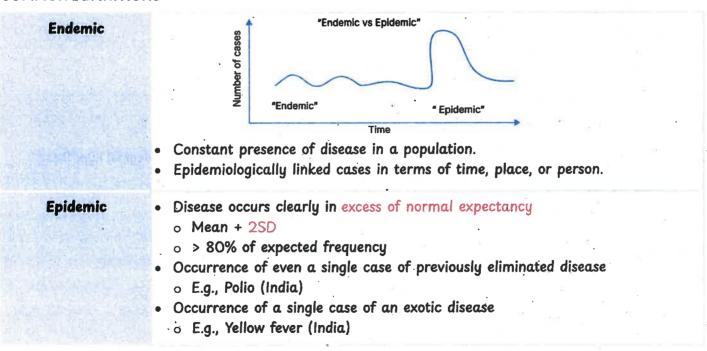

DESCRIPTIVE EPIDEMIOLOGY

00-00-34

- Study of distribution of disease in terms of time, place or person & identifying characteristics associated with it
- 1" phase of epidemiological investigation
- Helps in
 - o Formulation of hypothesis.
 - o Study distribution of disease
- New disease/disease of unknown etiology: 1st study design →

TIME DISTRIBUTION

00:04:45



SHORT-TERM FLUCTUATION

00:06:21

• Best example: Occurrence of an epidemic

COMMON DEFINITIONS

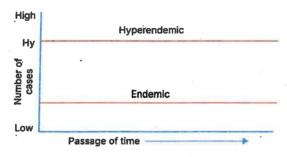
Outbreak

- Similar to Epidemic
- Localized distribution

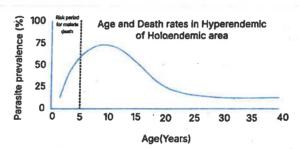
Pandemic

- · Worldwide distribution of cases
- · Disease should cross
 - o 2 continents or
 - o E.g. HIV

Sporadic


- Haphazard distribution
- Cases not epidemiologically linked in terms of time, place, and person.

Exotic


- · Disease has never occurred earlier
- E.g., Yellow fever (India)

Hyperendemic

 Disease is constantly present at high incidence/ prevalence rates and affects all age groups equally

Holoendemic

- High level of infection beginning early in life and affecting most of child population → state of equilibrium such that adult population shows evidence of disease much less commonly than do children
- E.g., malaria (India)

Mesoendemic

- · Disease in small, isolated communities of varying intensities
- o On an average, 30-40 cases of a disease X occurs in the population. Now, there are 38 cases seen. What type is this?
 - → Endemic

EPIDEMIC CURVE

00:17:10

- Graphic depiction of the number of outbreak cases by date of illness onset
- Provide information on the outbreak's:

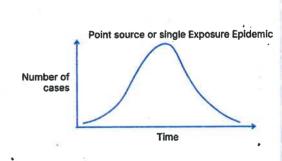
- o Pattern of spread
- o Magnitude
- Outliers
- o Time trend
- o Exposure, and/or disease incubation period.

TYPES Propagated epidemic Common source epidemic • Person to person Single exposure or point

- transmission source · Continuous exposure or
 - Arthropod vector

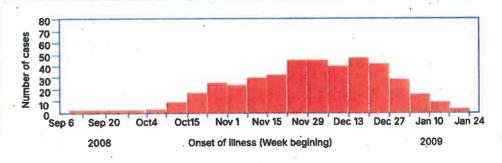
Animal reservoir

HYP


- Epidemic continues over more than 1 incubation period (IP)
 - o Common source, continuous or multiple exposure
 - o Propagated

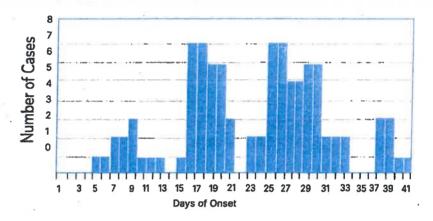
COMMON SOURCE EPIDEMICS

multiple exposure


Point source or single exposure epidemic

- Rapid rise & rapid fall in cases.
- All cases occur over 1 IP of disease.
- Explosive in nature
 - o Clustering of cases within 1 IP of disease.
- Single peak
- No secondary waves.
- Mostly infectious origin
 - o E.g., food poisoning
- Non-infectious origin
 - o Bhopal gas tragedy
 - o Minamata disease Japan
 - o Chernobyl tragedy

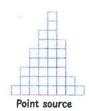
Slow or modern epidemic

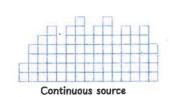

Common source or Continuous exposure

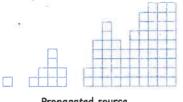
- Gradual rise → Plateau → Gradual fall
- Cases over > 1 IP of the disease
- Multiple peaks (secondary waves)

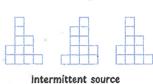
- · Nonexplosive in nature
- Smooth rise in cases
- · Prolonged plateau phase
- Epidemic extended or irregular
- Epidemic continues unless source is identified/community source found
 - o E.g
 - → Gonorrhea outbreak due to commercial sex worker
 - → Contaminated well/pipe (human excreta)
 - → Infected milk man
 - → Infectious cholera or food-borne typhoid fever outbreaks due to carriers or contaminated canned foods

Common Source Intermittent Exposure


- Exposure is intermittent
- No relation to Incubation period
- Multiple peaks
- E.g., Contaminated food or tinned product sold over a period of time


PROPAGATED EPIDEMIC


00:28:22


- Person-to-person transmission happens
- · Mostly infectious in origin
- Multiple spurts (multiple IP)
- Gradual rise of cases, not smooth rise → small plateau →
- Taller peaks
- E.g. Epidemics of hepatitis A, Epidemics of polio, Vector born disease, COVID

Propagated source in

MIXED OUTBREAK PATTERN

00:31:42 -

- Involves both common source outbreak & secondary propagated spread to others (usually household members)
- E.g., many foodborne pathogens (Norovirus, Hepatitis A, Shigella, and E. coli)

Golden Points

Point source/ Single exposure	Common source /continuous exposure	Propagated
Rapid rise and rapid fall of cases	Gradual smooth rise and gradual fall of cases	 Gradual unsmooth rise of cases (bumpy rise) with multiple spurts
• 1 incubation period	 > 1 incubation period 	> 1 incubation period
Explosive	Not explosive	Not explosive
 Single peak (Single incubation period) No 2° waves 	Multiple peaks (Multiple incubation period)Secondary waves seen	Secondary waves seen
No plateau phase	Prolonged plateau	• Very short plateau
Single tall peak	Multiple Short peaks	Taller peaks
 E.g. Infectious (mostly)Food poisoning Non-infectious: (Bhopal gas tragedy) 	 E.g. Contaminated well Commercial sex worker 	 E.g., Person - person transmission Hepatitis A Polio

PERIODIC FLUCTUATION OF DISEASE

00:34:03

Cyclical Disease distribution	Measles (unvaccinated area)	• 2-3 years
	Rubella	• 4-7 years
	Influenza	• 7-10 years