Structured Notes According to RADIOLOGY

Revision friendly Fully Colored Book/Structured Notes

For Best results, watch the video lectures along with reading notes

© Dr. Nikita Nanwani (Author)

All rights reserved of these books are reserved under Indian Copyright Act, 1956. No part of this publication may be reproduced stored in a retrieval system or transmitted, In any form or by any means, electrical, chemical, mechanical, optical, photocopying, recording or otherwise, without the prior permission of the copyright owners.

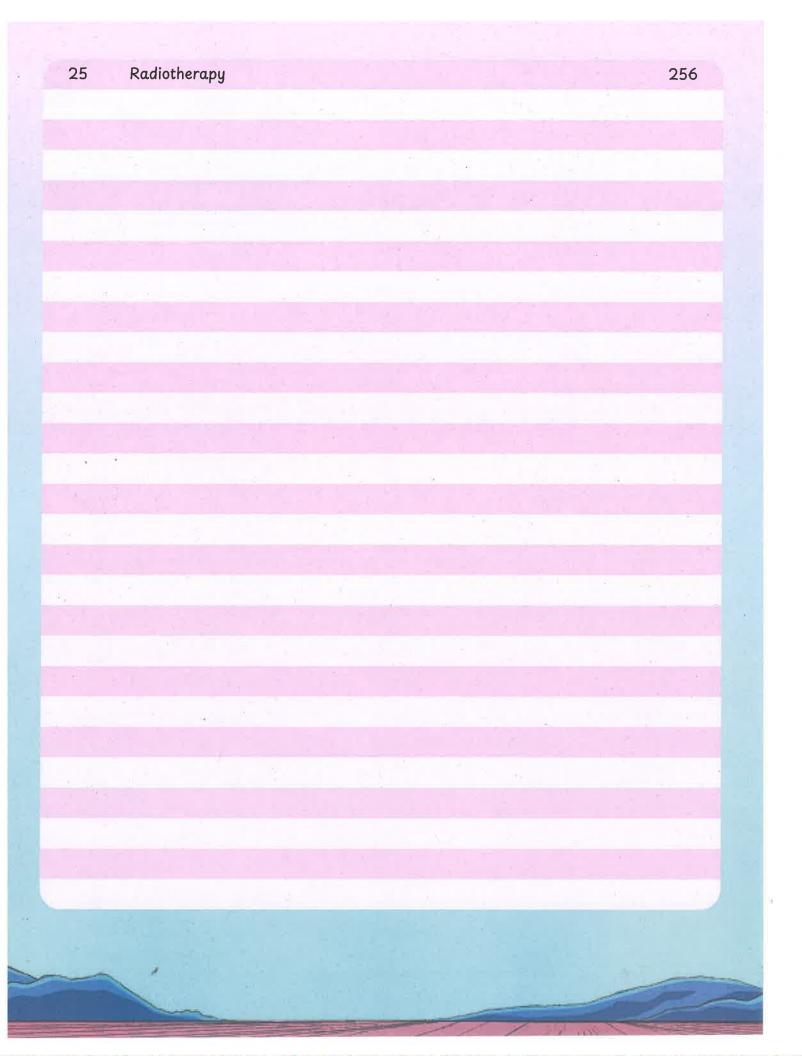
Photocopying the whole book/uploading PDFs or images of the book without the due permission of the copyright owner is punishable under the copyright act as it weighs against the fair use policy because completely copying and distributing the work for free online and physically would hinder the economic viability of creating and maintaining the source.

Any person/ organization found doing photocopy/PDF circulation will face, strict legal actions without any prior notice.

For best result you are advised to study these books/structured notes along with Dr. Nikita Nanwani's (Author) videos on PrepLadder app. For maximum gain, revision of these books/structured notes/books is being done multiple times. At the time of examination, going through-structured Notes is advisable rather than reading any reference book.

In case of any discrepancy between book and videos, Authors's videos on PrepLadder app should be considered.

The copyright of "Radiology Structured Notes" belongs to the author and any attempt to reproduce or replicate it in any form will result in a legal action without prior warning.


"The content, information provided herein are as provided and shared by the Author and have been produced on as-is basis. The Company disclaims all rights and liabilities in relation to the accuracy or correctness of the content, images or the information provided. The Author is solely responsible for, including without limitation, any claims, liabilities, damages, losses or suits that may arise with respect to the information provided herein

CONTENTS

F

Radiology

S. No.	TOPIC	
1	Basics of X Ray/ Fluoroscopy/ Mammography	1
2	Basics of CT	8
3	Basics of USG	14
4	Angiography	21
5	Basics of MRI	23
6	Interventional Radiology	30
7	Radiation Units/ Protection/ Dose Limits and Hazards	33
8	Contrast Media	39
9	Respiratory Radiology	44
10	Cardiovascular Radiology	65
11	Neuroradiology Part 1	80
12	Neuroradiology Part 2	91
13	Neuroradiology Part 3	112
14	Head & Neck Radiology	128
15	Gastrointestinal Radiology Part 1	144
16	Gastrointestinal Radiology Part 2	155
17	Gastrointestinal Radiology Part 3	162
18	Hepatobiliary and Pancreatic Radiology	166
19	Genitourinary Radiology	181
20	OBG Imaging	199
21	Breast Imaging and Testicular Imaging	216
22	Musculoskeletal Radiology Part 1	223
23	Musculoskeletal Radiology Part 2	234
24	Nuclear Medicine	247

1. BASICS OF X RAY/FLUOROSCOPY/ MAMMOGRAPHY

IONISING POWER AND PENETRATION

00:01:45

ullet lonizing power ullet Amount of damage that occurs due to free radicals from radiation

o AKA:

IONIZING POWER

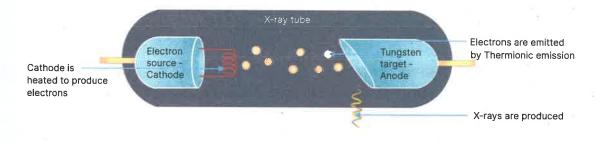
$$\rightarrow \alpha > \beta > X$$
-Rays $> \gamma$ rays

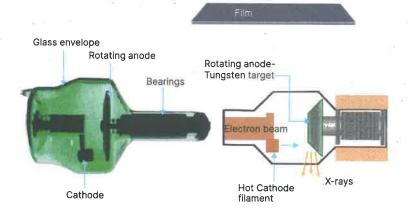
PENETRATION POWER \longrightarrow α < β < X-Rays < γ rays < Neutrons

TYPES OF INVESTIGATION

00:03:07

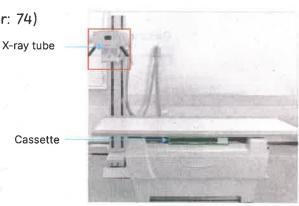
IONIZING	NON-IONIZING
 Radiography CT scan (3D X-rays) Contrast X-rays: → Gamma rays Nuclear medicine → PET 	 USG: Doppler, FAST MRI: radio waves: → MRCP Thermography
Gamma ray X-ray	Ultraviolet Infrared Radio Visible Microwave
Shorter wavelength Higher frequency ———— Higher energy	Longer wavelength Lower frequency Lower energy
JAHAN WANNAMA (


- Gamma rays → By nuclear disintegration
- X-rays →


X-RAY PRODUCTION

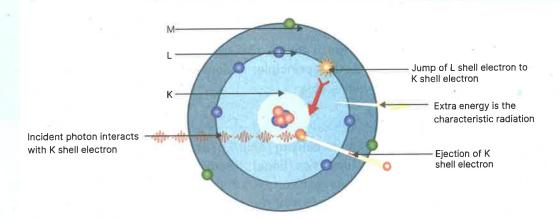
- Cathode (Filament)
 - o Electron source emitting electrons via

when heated


- Anode (Tungsten Target)
 - o Stops electron beams
 - Converting their energy into X-rays, which pass through the window and reach film
 - o Rotating anodes: 1 Life of anode
 - o Stationary anodes: Emergency department and Dental clinics
- Focusing cup in X-ray tube: Prevents deviation of electrons

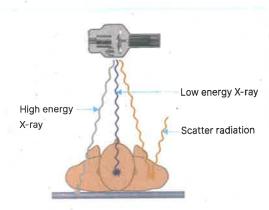
X-RAY TUBE COMPONENTS

- Glass envelope Coated with lead (Pb)
- Cathode: Tungsten (W, Atomic number: 74)
 and Thorium
- Anode: Tungsten and Rhenium
- · Focusing cup: Nickel


X-RAY **PRODUCTION MECHANISM**

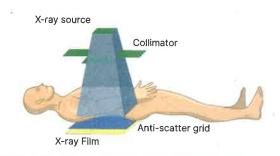
Bremsstrahlung radiation

- Electron beam → towards anode → nucleus deflects beam → beam travels in different direction
- Deflection $\rightarrow \downarrow$ in energy & emission of X-rays
- Aka: braking radiation


Characteristic radiation

- Generated when high-energy electrons eject innershell electrons of a target atom
- Outer-shell electrons fill the vacancy
- · Releasing X-rays with energies unique to the target material's atomic number

PRODUCED (Polychromatic)


- FATE OF X-RAYS High-energy X-rays penetrate → Image formation
 - Low energy X-rays are absorbed patients body leading to radiation exposure.
 - Scatter radiation.
 - o Filter →
 - → Helps to remove the low-energy X-ray
 - Lead apron → protect from scatter radiation

X-RAY INTERACTIONS

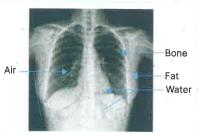
	Photoelectric Effect	Compton Effect
Shell	 Innermost 	• Outermost
Energy	• Low energy photon	High energy photon
Effects	GoodProduces contrast in the films	 Bad, produces scattered radiations on the film Scatter radiation is reduced by Placing grid, btw patient and film.

EXPOSURE FACTORS

- \uparrow Kvp: \uparrow penetration (used in obese pt.) & \downarrow contrast
- ↑mAs: ↑ Blackening of the film

As distance double, radiation intensity become 1/4th

ALARA principle: as low as reasonably achievable

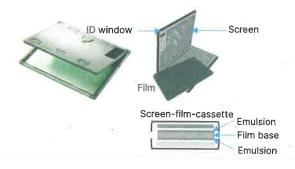


BLACK AND WHITE PRINCIPLE IN X-RAYS

- Minimum density (air): ↑ penetration → black appearance
- High densities (bone): ↓ Penetration, white
 - o Lungs with consolidation, collapse, pleural effusionWhite
 - o Pneumothorax Black

5 DENSITIES OF X-RAY

X-RAY FILM SIDE DETERMINATION


 $L \rightarrow Left$ side of patient

TYPES OF RADIOGRAPHY

00:28:31

CONVENTIONAL/ FILM SCREEN RADIOGRAPHY

- Screen: Intensifies X-ray effects; films are light-sensitive and processed in dark · X-ray Film: Made of

Photo Stimulable

Phosphor plate

rooms (has safe red light) Development: Takes ~ 45 minutes

CR (Computed Radiography)

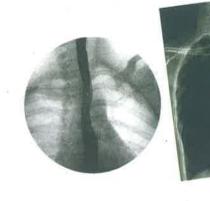
- PSP plate: Photostimulable phosphor, plate
 - O Replaces film, read by a scanner, sending images to a computer
- Advantages over Conventional Radiography
 - o Faster

 - $_{\circ}$ Images are editable, and number of retakes \downarrow o PSP is reusable

- . X-rays \rightarrow emitted from tubes \rightarrow detected by an electronic detector
- Image is available on computer
- Advantages of DR
 - o No PSP plate
 - o No film

 - o PACS (Picture archiving communication o Very fast system) compatible (also CR is PACS compatible)

00:33:39

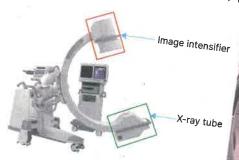

Scanner

FLUOROSCOPY

- Video X-ray or Cine X-ray
- Used for moving objects/structures

Used for moving objects/s	DSA
Blood	Barium study
GIT peristalsis	Palsy
Diaphragm	Used in ortho OT.
C-arm	Dye study
Contrast X-rays	masure than X-ray

• Fluoroscopy: More radiation exposure than X-ray



- C-ARM
- Image intensifier converts images into a video on the screen C-shaped machine with an

00:36:25

- (may appear black)

and MR angio, vessels \rightarrow white

MAMMOGRAPHY

MAMMOGRAPHY

- X-ray of breast.
- Has compression plates

INDICATION

Screening for breast cancer

- CONTRAINDICATIONS Acute painful conditions: mastitis, breast abscess
 - Young female due to dense fatty breast (indicated >40 years) DCIS (MRI is more sensitive)

2 VIEWS

- CC view
- MLO View \rightarrow axilla

MAMMOGRAPHY VS X-RAY

- Important finding: Microcalcification
- ↑Contrast ↓ KVP
- Anode made up of molybdenum and rhodium Window made up of Beryllium

Important Information

BI-RADS 1 → Normal mammography

MCQ's

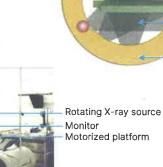
- Q. Which of the following types of radiation has the highest penetrating power?
 - a. Alpha
 - b. Beta
 - c. Gamma
 - d. Neutron radiation

Ans: (d)

- Q. What are the essential requirements for achieving effective mammography?
 - a. Low resolution and high radiation dose
 - b. Low resolution and low radiation dose
 - c. High resolution and high radiation dose
 - d. High resolution and low radiation dose

Ans: (d)

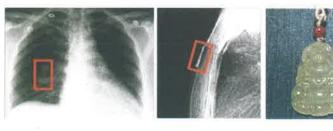
X-ray detectors


X-ray beam

X-ray source

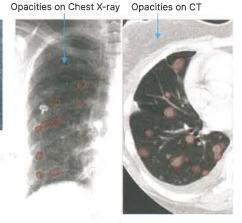
2. BASICS OF CT

CT PRINCIPLE


- CT (Computed Tomography):
 X-ray tubes
- Pitch
 - o Distance the table moves for every gantry rotation
 - o Inversely proportional to image quality and radiation dose

CT Vs X-RAY

00:02:37



- o Two perpendicular views are essential for localization
- CT imaging allows precise localization of nodules
 - o No superimposition

Important Information

• Walls of CT room is coated with lead.

CT Vs MRI

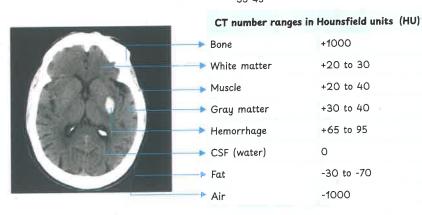
00:04:11

CT SCAN	MRI SCAN
Radiation present	No radiation
Round gantry	Long tunnel
Faster	Takes longer time.

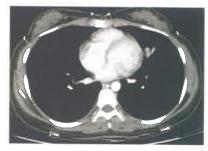
Preferred in emergency conditions

Not preferred in emergency conditions

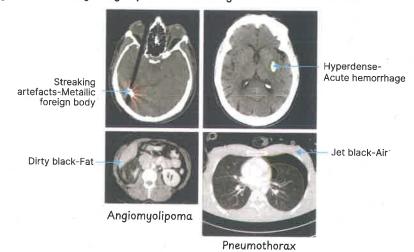
HOUNSFIELD UNITS (HU)


- Godfrey Hounsfield invented the CT scan
- Based on attenuation of the X-rays
- Depends on radiodensity of substance

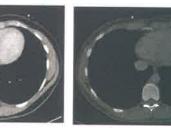
HU VALUE


- Bones -
- Air least attenuation (-1000)
- Water \rightarrow reference substance: O HU value \rightarrow Grey
- Less dense than water → -ve HU → black
- More dense than water →

 | Air-1000 | Fat-100 | Water 0 | White matter | Calcium 200-1000 | Metal 1000+ 22-30 | matter 55-75 | 35-45 | |


- Bone White
- Fat Dirty black
- Air Jet black

PATHOLOGIES ON CT


- Air \rightarrow Jet black \rightarrow Pneumothorax
- \bullet $\mbox{Fat} \rightarrow \mbox{Dirty black} \rightarrow \mbox{Angiomyolipoma of kidney in tuberous sclerosis}$

CT WINDOW

Lung window

Mediastinal/Soft tissue window

Bone window

NCCT Vs CECT

00:11:53

NCCT
(NON-CONTRAST CT)

Aorta

Grey

NCCT

CECT
(CONTRAST-ENHANCED CT)

White

Lesions seen in the liver in CECT

Contrast filled Aorta

Liver Lesions	Not seen	Seen
Indications	 Calcification (Renal stones) Acute hemorrhage - Hyperdense (chronic hemorrhage- SWi MRI) Head Trauma except DAI (Diffuse axonal Injury →MRI) 	 Lesions (space occupying lesions like liver, brain tumor, etc.) Infective/inflammatory pathology

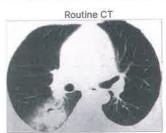
AXIAL CT VS SPIRAL CT

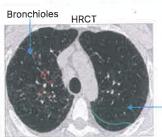
00:16:41

•	AXIAL CT	HELICAL/SPIRAL CT
Movement	 Gantry bed moves after each X-ray tube rotation Patient and gantry do not move simultaneously Axial CT	Patient and gantry move simultaneously due to slip ring technology Helical/Spiral CT
Time	Time-consuming	Quick whole-body scans are possible
Applications	Suitable for brain CT	Suitable for whole-body, cardiac (done in mid-diastolic phase), lung, and abdominal scans
Technology	Traditional setup	Uses multi-detector CT (MDCT) with slip ring technology
Reconstruction	Limited reconstruction capability	Allows multi-planar reconstruction

HIGH-RESOLUTION COMPUTED TOMOGRAPHY - HRCT

00:20:05

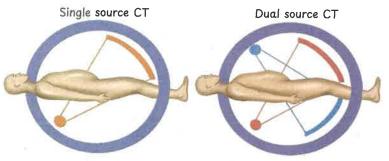

Uses


- Used in air containing cavities surrounded by bones
 - o In chest: Bronchiectasis and ILD
 - o PNS (Paranasal sinuses)
 - o Temporal bone fractures

Features of HRCT

- Slice thickness is thinner than routine CT
- Field of view is small →
- ullet Bone algorithm is used for reconstruction ullet of sharper images

Routine CT Vs HRCT



Lung fissure

DUAL ENERGY CT 00:20:00

• Identifies radiolucent stones (e.g., uric acid stones in gout)

Uses two different x-ray tubes: Low and high Kv tubes

OTHER SPECIAL CT

00:23:00

OTHER SPECIAL CT

CTPA (CT Pulmonary Angiogram)

CT Cisternography

Virtual colonoscopy/ bronchoscopy

CT perfusion

CT Urography

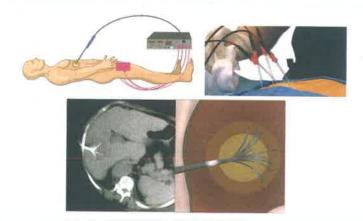
Triple phase CT

USES

IOC: pulmonary embolism.

To pick up the site of CSF leak

Ischemic penumbra


Counterpart of X-ray IVP

Liver lesion characterization

THERAPEUTIC APPLICATIONS OF CT

CT-GUIDED RFA

- For location identification
- HCC, Osteoid osteoma

MCQ's

00:25:20

- $\ensuremath{\mathsf{Q}}.$ Which of the following has a negative HU value
 - a. Water
 - b. Fat
 - c. Bone
 - d. Metal

Ans: (b)

- Q. CT is investigation of choice for
 - a. Chronic hemorrhage
 - b. Minimal pleural effusion
 - c. Head trauma
 - d. ACL tear

Ans: (c)

3. BASICS OF USG

USG

- Frequency of sound in ultrasound \rightarrow 1-20MHz
- Human audibility range 20Hz to 20kHz
- Radiation: No

PRINCIPLE

• Pulse echo/Piezoelectric effect

Crystals in probe receive electrical signals

Produce sound waves

Crystal receives sound energy back from patient's body

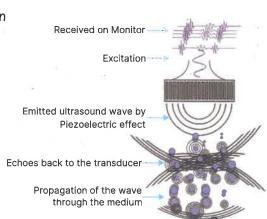
Converts into electrical signals

Form an image on screen

- Air b/w skin and probe :
- Gel (hydrogel): Remove air → Medium for transmission of sound
- Crystal Material (PZT) = Lead Zirconium Titanate (Previously used- Quartz)
- USG machine has multiple probes with different frequencies of sound

FREQUENCY OF PROBE DECIDES

- Depth of penetration
- Resolution of image


If frequency 1

- → Higher/faster attenuation
- Superficial penetration
- → High resolution

00:00:23

00:01:16

CONVEX PROBE

- Low frequency: 2 to 5 MHz
- Low resolution ↑ Depth
- Used in abdomen/ obstetrics scanning

PHASE ARRAY PROBE

Used for Echocardiography

LINEAR PROBE

- ↑ frequency:
- ↑ resolution
- Used for superficial structures like thyroid, breast, and scrotum

TVS PROBE

Used for

- Transvaginal USG for uterus and ovary sonography
- TRUS: Transrectal USG for prostate
- Higher resolution

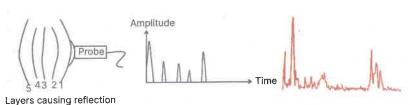
ADVANTAGES AND DISADVANTAGES OF USG

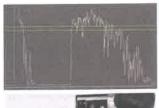
00:07:09

ADVANTAGES

- Uses sound waves : No radiation
- Preferred investigation in pregnancy
- Cost effective
- Easily available
- Portable

DISADVANTAGES


Operator dependent

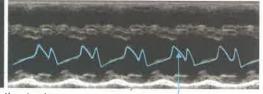

MODES OF ULTRASOUND

00:07:59

A-SCAN

- Used to measure axial length of eyeball
- Done before cataract surgery
- When a probe is placed →
- The depth of peaks is measured


B-SCAN


- M/c used
- Brightness is measured according to the grayscale
- · Helps to evaluate posterior segment of eye

M-SCAN

• M scan: Motion/movement

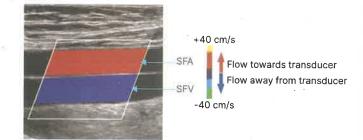
Fetal heart

Line passing through the structure

Movement of the structure

Movement of the fetal heart

- Used to measure fetal heart rate
- Used in suspected diaphragmatic palsy
- Also used to check for eFAST pneumothorax →

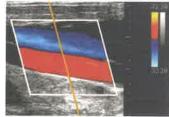

DOPPLER EFFECT

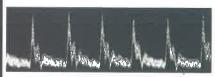
00:10:50

Doppler: To visualize the blood flow → Based on Doppler shift or effect

COLOUR +

- Red & Blue indicate direction of blood flow
- Intensity of color indicates velocity of blood flow
- Mnemonic : red tower blows away




NO COLOUR

- Indicates no flow due to thrombus formation
- False absent flow due to technical error
 - \circ Cos θ is involved
 - o When Doppler is done at 90° (perpendicular to blood flow)
 - \rightarrow Cos 90° is 0
 - \rightarrow Velocity of sound waves is O \rightarrow Absent blood flow
 - Maximum velocity → Doppler at O°
- Doppler should be done at an angle < 60°
- If angle is > 60° false results / absent blood flow

SPECTRAL DOPPLER / DUPLEX DOPPLER

 Graph of the blood flow → Measures : Velocity, Resistance index, PI (Pulsatility index), S/D ratio, etc

