

Pharmacology

World of Revision

Marrow

MARROW

Instructions

- Notes are to be used in conjunction with Marrow videos.

Please note:

- The information in this book has been printed based on the transcript of the Marrow videos. This book has to be used in conjunction with the Marrow videos and not as a standalone material.
- The information contained in this book is for educational purposes only. The content provided is not intended to substitute for professional medical advice, diagnosis or treatment.
- This book cannot be sold separately. It has been made available to only select eligible users who have an active subscription to Marrow videos.
- The text, images, slides, and other materials used in this book have been contributed by the faculty, who are subject matter experts. We have merely reproduced them as video transcripts in this book.
- The notes have been consciously designed in a way that is concise and revisable. To ensure this, we have intentionally added only the most relevant modules and images that are needed for you.
- The notes contain blank spaces primarily for labelling diagrams, completing cycles and more to promote active engagement and reinforce learning.
- Red icons, wherever present, serve as cues to faculty-emphasised sections, intended to guide focused learning.
- Reasonable care has been taken to ensure the accuracy of the information provided in this book. Neither the faculty nor Marrow takes any responsibility for any liability or damages resulting from applying the information provided in this book.

All Rights Reserved

No part of this publication shall be reproduced, copied, transmitted, adapted, modified or stored in any form or by any means, electronic, photocopying, recording or otherwise.

Contents

Pharmacology

General Pharmacology : Part 1	1
Types of drugs • Pharmacokinetics and pharmacodynamics • Drug absorption • drug distribution • Drug metabolism • Drug excretion	
General Pharmacology : Part 2	8
Parameters of pharmacodynamics • Dose - response curve (DRC) • Drug receptor interaction • Receptors • Drug safety • Adverse drug reactions • Therapeutic drug monitoring • Miscellaneous	
Drugs Acting on Autonomic Nervous System	16
Neurotransmitters of ANS • Systemic ANS drugs action • Side effects of drugs • β -blockers • Physiological effects of autonomic drugs • Anti-glaucoma drugs	
Drugs Acting on CVS	24
Anti-arrhythmic drugs • Heart failure drugs • Hypertension • Anti-anginal drugs • Side effects • Hypolipidemic drugs	
Drugs Acting on Kidney	34
Diuretics • Vasopressin related drugs	
Drugs Acting on CNS	36
Anti-epileptic drugs • Psychiatric drugs • Degenerative disorders • Miscellaneous • Migraine • Sleep disorders • Opioids • MX of dependencies • Side effects of CNS drugs • Extrapyramidal symptoms • Lithium • Side effects of opioids	
Antimicrobial Drugs : Part 1	46
Classification • Cell wall synthesis inhibitors • Protein synthesis inhibitors • Anti-folate drugs • Fluoroquinolones • Side effects	
Antimicrobial Drugs : Part 2	54
Non-retroviral drugs • Antiretroviral drugs • Antifungal drugs • Antihelminthic drugs • Antiprotozoal drugs • Antitubercular drugs • Antileprosy drugs	
Drugs Acting on Endocrine System	60
Antidiabetic drugs • GnRH related drugs • Drugs for contraception • Growth hormone related drugs • Drugs used in osteoporosis • Steroid hormone related drugs • Thyroid related drugs	

Autacoids 68

Antihistaminics • NSAIDs • Prostaglandin analogs •
Disease modifying anti-rheumatoid drugs (DMARDs) • Anti-gout drugs

Drugs Acting on RS, GIT and Blood 73

Antiasthmatic drugs • Antitussives • Drugs used in peptic ulcer disease (PUD) •
Prokinetics • Antiemetics • Laxatives • Anti-diarrhoeal agents • Antiaggregants •
Anticoagulants • Fibrinolytics/Thrombolytics • Hematopoietic agents

Immunomodulators and Anticancer Drugs 82

Immunosuppressants • Solid tumors • Breast cancer • Leukemia •
Side effects and antidotes of anti-cancer drugs • Miscellaneous anti-cancer drugs

© Marrow | sahoosatyajeet000@gmail.com

GENERAL PHARMACOLOGY : PART 1

----- Active space -----

Types of Drugs

00:00:07

Orphan drugs : used for **rare diseases** → ↓ Profitability.

Essential drugs : meets healthcare needs of the majority of a population.

- Inexpensive.
- Easily available.
- Efficacious.
- Safe.
- **Single molecule** (Not fixed dose combination).

Prescription/legend drugs : Require prescription (under **Schedule H**).

Spurious drugs : Do not produce expected effect as drug component is falsified.

Misbranded drugs : Incorrect or missing information on drug label (Produces adequate effect).

Adulterated drug : Unwanted **additive** in drug (Cough syrup : Glycerine contaminated with diethylene glycol → Renal failure).

P-drug :

- 'Personal drug' for any disease.
- **STEP** criteria to choose P-drug :
 - Safe.
 - Tolerable.
 - Efficacy.
 - ↓ Price.

Rational Drug Use :

use of right drug for right disease & patient; at right dose, duration & route with right dispensation & monitoring ("Right price" **not included**).

Pharmacokinetics and Pharmacodynamics

00:14:05

Pharmacokinetics :

Movement of drug through the body (**ADME**) :

- Absorption.
- Distribution.
- Metabolism.
- Excretion.

Pharmacodynamics :

Drug induced changes in body via target (**DRE** : Drug receptor effect).

----- Active space -----

Drug Absorption

00:17:24

- m/c mechanism: **Passive diffusion**.
- ↑ Diffusion: **Unionized drug** (Same pH of drug and medium) d/t ↑ **lipid solubility**.
- **maximum absorption** → **Small intestine** (Large surface area).

Pka: pH where drug → 50% ionized & 50% unionized.

Oral Absorption:

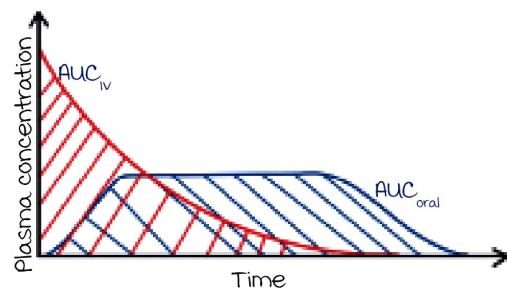
Good oral absorption drugs :

Drugs with :

- **Small size**.
- ↑ **Lipid solubility**.

Poor oral absorption drugs :

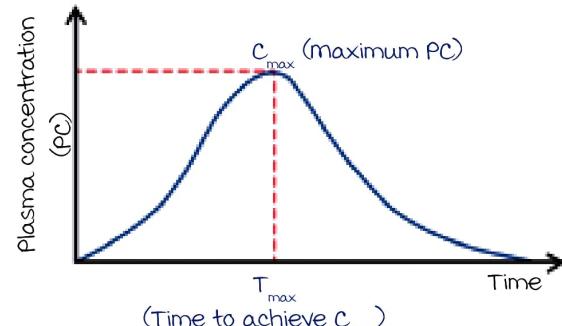
- **Proteins** d/t large size.
- Drugs ending with :
 - tide (Octreotide).
 - ase (Asparaginase).
 - mab (Trastuzumab).


Extent and Rate of Absorption:

Extent of absorption :

- Amount of drug absorbed.
- AKA **bioavailability** (f: Fraction).
- Formula :

$$\text{Bioavailability (BA)} = \frac{\text{AUC}_{\text{oral}}}{\text{AUC}_{\text{IV}}}$$


(AUC = Area under curve)

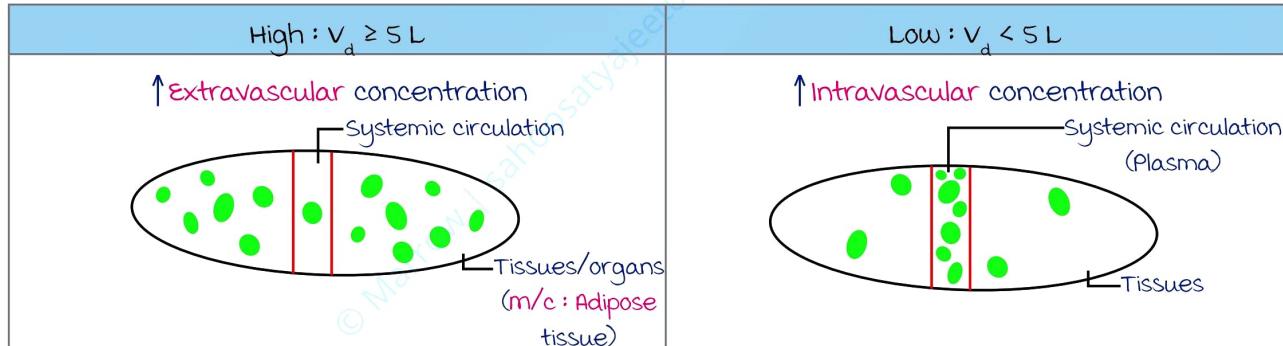
- Normal range of BA: 0 to 1.
- 100% BA: IV and **inhalational gas**.
- BA depends on :
 - Bypassing 1st pass metabolism.
 - Absorption.

Rate of absorption :

- Amount of drug absorbed per unit of time.
- Determined by **T_{max}**.

Fastest rate : **Inhalational route**.

Role of ATP Binding Cassette (ABC) :


----- Active space -----

- AKA p-glycoprotein (p-GP)/multidrug resistance-1 (MDR-1) pumps.
- Helps in drug efflux.

	Substance excreted by p-GP	Drugs & action on p-GP	Effect of drug
Intestinal cell	Digoxin	Clarithromycin : (−)	Digoxin toxicity
		Rifampicin : (+)	Digoxin failure
BBB	Loperamide	Quinidine : (−)	Loperamide induced respiratory depression
Hepatocyte	Bile acids	Cyclosporine : (−)	Cholestasis
Tumor cell/ bacteria	Anticancer/antibiotics (Cause resistance)	Verapamil : (−) (Competitive)	(−) Development of resistance

Drug Distribution

00:41:47

volume of distribution (V_d) : αV_d :

$$\alpha V_d = \frac{D}{C_0} = \frac{\text{Dose of drug via IV route}}{\text{Initial PC} (C_{max})}$$

$$D = \alpha V_d \times C_T \text{ (Target PC)}$$

Significance :

i. Loading dose (LD) :

i. In IV route :

$$LD = \alpha V_d \times C_T$$

ii. Other route :

$$D \times f = \alpha V_d \times C_T$$

$$LD = \frac{\alpha V_d \times C_T}{f}$$

----- Active space -----

2. Dialysis : Not effective against high V_d drugs.

Drugs with $\uparrow V_d$ (BAD DOC)	Antidote
Benzodiazepine	Flumazenil
β -blocker	Glucagon
Amphetamines	Ammonium chloride
Digoxin	Digibind
Opioids	Naloxone
Organophosphates	Atropine
Calcium channel blockers	Calcium gluconate

Plasma Protein Binding :

Proteins :

Albumin (m/c)	Alpha-1-acid glycoprotein
Binds to acidic drugs	Binds to basic drugs
<ul style="list-style-type: none"> • Aspirin • Anti-coagulant (warfarin) • Anti-epileptics/ anti-psychotics/ anti-depressants • Antibiotics (Sulfonamides) 	<ul style="list-style-type: none"> • Opioids • Tricyclic anti-depressants • β-blockers • Anti-arrhythmics (Amiodarone/Lidocaine)

Significance :

Hypoalbuminemia d/t :

i) \downarrow Synthesis :

- \downarrow Drug binding

\uparrow Free drug

\uparrow Toxicity.

- Seen in cirrhosis.

ii) \uparrow Excretion :

- \uparrow Drug excretion (Albumin bound)

\uparrow Failure.

- Seen in :

- Nephrotic syndrome.
- Diabetes mellitus.
- Chronic kidney disease.

Drug Metabolism

00:54:14

----- Active space -----

Phases :

	Phase I	Phase II (AKA conjugation)
mechanisms	Breakdown of drug (S) + Addition of functional group (FG)	Conjugate (-ve charged) binds to FG ↓ Ionised/water soluble drugs
Reactions	ORCHAD : • Oxidation (m/c) • Reduction • Cyclization • Hydrolysis	GAMS (mnemonic) : • Glucuronidation (m/c) • Glycation • Glutathionation • Acetylation • Methylation • Sulfation
Enzyme involved	CYP450 enzymes : m/c : CYP3A4	Glucuronyl transferase (GT) : Glucuronidation
Clinical significance	-	Crigler Najjar syndrome : ↓ GT → ↑ Toxicity of : i) Irinotecan ii) Atazanavir

Note :

CYP450 enzymes (m/c : CYP3A4) :

- CY : Cytochrome → Heme protein.
- P : Pigments that absorb light of 450 nm wavelength.
- 3 : Family.
- A : Sub-family.
- 4 : Gene isoform number.

Drug-Enzyme Interaction :

	Enzyme inducers	Enzyme inhibitors
Effect	Cause drug failure	Cause drug toxicity
Examples	mnemonic : GRAB PC • Griseofulvin • Rifampicin • Alcohol (Chronic consumption) • Benzopyrene • Phenytoin, Phenobarbital, Primidone • Carbamazepine, Cigarettes	mnemonic : QUICK VEG, DISK • Quinidine • Isoniazid, Protease inhibitors • Cimetidine, Chloramphenicol, Ciprofloxacin • Ketoconazole, Itraconazole, Fluconazole • Valproate • Erythromycin • Grapefruit juice • DEC, Delavirdine, Disulfiram
Important drug interactions	Rifampicin : • OCP failure • C/i in HIV with TB : - Affects Dolutegravir - Rx : Double the dose of Dolutegravir or change Rifampicin to Rifabutin	• Erythromycin → Theophylline toxicity • Clarithromycin → Statin toxicity

----- Active space -----

Drugs metabolised by Plasma Esterase :Quick action of plasma esterase \rightarrow Short $T_{1/2}$ of drugs.

Examples : Plasma Esterase Can Readily metabolise Short Acting drugs.

- Procaine, cocaine.
- Esmolol, Landiolol
- Clevidipine.
- Remifentanil, Remimazolam.
- Mivacurium.
- Succinylcholine.
- Acetylcholine.

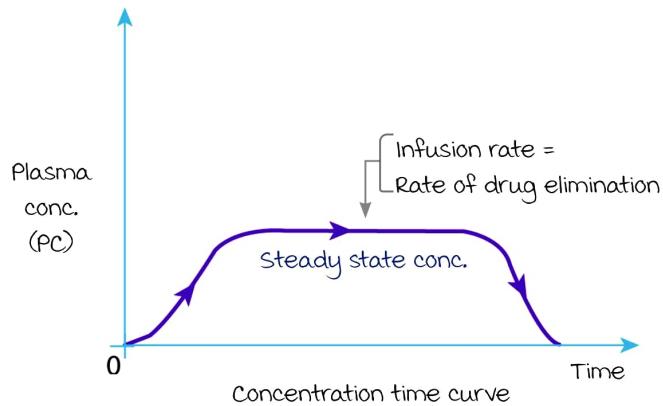
Drug Excretion

01:07:50

- m/c organ : Kidney.
- Differing pH b/w drug & medium \rightarrow \uparrow Ionization \rightarrow \uparrow water solubility \rightarrow \uparrow Excretion.

Significance :

Drug toxicity :


- Acidic drugs (Aspirin, Phenobarbital) \rightarrow Alkalisation of urine with bicarbonate.
- Basic drugs (Amphetamines) \rightarrow Acidification of urine with ammonium chloride.

mechanisms :

Tubular secretion (80%) : \rightarrow Filtration (20%) :
 Free + plasma protein bound. \rightarrow Free drug only.

Calculations :

Aim : Achieve & maintain steady state plasma concentration (SSPC).

Rate of drug elimination : Amount of drug excreted per unit of time.

$$\text{Rate (in mg/hr)} = \text{PC} \times \text{clearance}$$